

Perspectives for quarkonium production at the LHC

J.P. Lansberg École polytechnique – CPHT

J.P. Lansberg (Ecole Polytechnique-CPHT)

Quarkonium production at the LHC

July 22, 2010 1 / 17

Outline

What we understand:

1 why QCD corrections do matter at mid- and high- P_T

What we seem to understand:

- 2 The CSM predictions account correctly for the yield
- 3 Colour Octet Dominance is challenged at low/mid P_T in pp
- QCD corrections do matter for the polarisation

What we do not understand:

5 ψ production at very large P_T

What we expect from the LHC

More observables !

3

Part I

What we understand

J.P. Lansberg (Ecole Polytechnique–CPHT) Qual

Quarkonium production at the LHC

▶ < ≣ ▶ ≣ ∽ ९ ୯ July 22, 2010 3 / 17

・ロト ・聞ト ・ヨト ・ヨト

J.P. Lansberg (Ecole Polytechnique-CPHT) Quarkon

(日) (周) (三) (三)

J.Campbell, F. Maltoni, F. Tramontano, Phys.Rev.Lett. 98:252002,2007 P.Artoisenet, J.P.L, F.Maltoni, PLB 653:60.2007 P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, Phys. Rev. Lett. 101, 152001 (2008)

3

< 🗇 🕨 < 🖃 🕨

J.Campbell, F. Maltoni, F. Tramontano, Phys.Rev.Lett. 98:252002,2007 P.Artoisenet, J.P.L, F.Maltoni, PLB 653:60.2007 P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, Phys. Rev. Lett. 101, 152001 (2008)

3

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

J.Campbell, F. Maltoni, F. Tramontano, Phys.Rev.Lett. 98:252002,2007 P.Artoisenet, J.P.L, F.Maltoni, PLB 653:60,2007 P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, Phys. Rev. Lett. 101, 152001 (2008)

J.Campbell, F. Maltoni, F. Tramontano, Phys.Rev.Lett. 98:252002,2007 P.Artoisenet, J.P.L, F.Maltoni, PLB 653:60,2007 P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, Phys. Rev. Lett. 101, 152001 (2008)

QCD corrections for J/ψ at RHIC

JPL, arXiv:1003.4319 [hep-ph]

QCD corrections for J/ψ at RHIC

JPL, arXiv:1003.4319 [hep-ph]

Part II

What we seem to understand

J.P. Lansberg (Ecole Polytechnique–CPHT) Quar

Quarkonium production at the LHC

▶ < ≣ ▶ ≣ ∽ ९ ୯ July 22, 2010 6 / 17

the CSM predictions account correctly for the yield $\left(\frac{d\sigma}{dy}\right)$

S. J. Brodsky and JPL, PRD 81 051502 (R), 2010

the CSM predictions account correctly for the yield $\left(\frac{d\sigma}{dy}\right)$

S. J. Brodskv and JPL, PRD 81 051502 (R), 2010

LO: $gg \rightarrow J/\psi g$ (nothing new !, back to 1981 !)

the CSM predictions account correctly for the yield $\left(\frac{d\sigma}{dy}\right)$

S. J. Brodskv and JPL, PRD 81 051502 (R), 2010

NLO: $gg \rightarrow J/\psi$, $gq \rightarrow J/\psi gq$, ...

using the matrix elements from J.Campbell, F. Maltoni, F. Tramontano, PRL 98:252002,2007

the CSM predictions account correctly for the yield $\left(\frac{d\sigma}{dv}\right)$

S. J. Brodsky and JPL, PRD 81 051502 (R), 2010

NLO⁺: adding one new LO contribution $cg \rightarrow J/\psi c$

the CSM predictions account correctly for the yield $\left(\frac{d\sigma}{dv}\right)$

S. J. Brodsky and JPL, PRD 81 051502 (R), 2010

NLO⁺: adding one new LO contribution $cg \rightarrow J/\psi c$

Could be studied via azimuthal correlation $J/\psi + e, \mu$; 10-40% of the direct signal

• Constraints from the P_T dependence in pp

• Computation at NLO for CO channel: CO predictions overshoot data at low P_T

B. Gong, X. Q. Li, J.-X. Wang, PLB 673:197,2009.

• Constraints from the P_T dependence in pp

• Computation at NLO for CO channel: CO predictions overshoot data at low P_T

B. Gong, X. Q. Li, J.-X. Wang, PLB 673:197,2009.

The P_T dependence is badly reproduced and cannot be properly fit

• Constraints from the P_T dependence in pp

• Computation at NLO for CO channel: CO predictions overshoot data at low P_T

B. Gong, X. Q. Li, J.-X. Wang, PLB 673:197,2009.

The P_T dependence is badly reproduced and cannot be properly fit

- Strong constraints from the e^+e^- analyses
 - Recent update by Belle of $e^+e^- \rightarrow J/\psi + X_{non\ c\bar{c}} = 0.43\pm 0.09\pm 0.09$ pb

• Constraints from the P_T dependence in pp

• Computation at NLO for CO channel: CO predictions overshoot data at low P_T

B. Gong, X. Q. Li, J.-X. Wang, PLB 673:197,2009.

< 回 > < 三 > < 三 >

The P_T dependence is badly reproduced and cannot be properly fit

- Strong constraints from the e^+e^- analyses
 - Recent update by Belle of $e^+e^- \rightarrow J/\psi + X_{non\ c\bar{c}} = 0.43 \pm 0.09 \pm 0.09$ pb • $e^+e^- \rightarrow J/\psi gg$ CS at NLO + rel. corr. : 0.4-0.7 pb
 - no space for CO $({}^{1}S_{0}$ or ${}^{3}P_{J})$ in *B*-factory data

Y.Q.Ma, et al., PRL102 (2009)162002; B.Gong, J.X.Wang, PRL102 (2009) 162003; Z.G. Hue et al., PRD81 (2010) 054036

• Constraints from the P_T dependence in pp

 Computation at NLO for CO channel: CO predictions overshoot data at low Ρт

B. Gong, X. Q. Li, J.-X. Wang, PLB 673:197,2009.

The P_T dependence is badly reproduced and cannot be properly fit

- Strong constraints from the e^+e^- analyses
 - Recent update by Belle of $e^+e^- \rightarrow J/\psi + X_{non\ c\bar{c}} = 0.43 \pm 0.09 \pm 0.09$ pb • $e^+e^- \rightarrow J/\psi gg$ CS at NLO + rel. corr. : 0.4-0.7 pb

no space for CO $({}^{1}S_{0} \text{ or } {}^{3}P_{I})$ in *B*-factory data

Y.Q.Ma, et al., PRL102 (2009)162002; B.Gong, J.X.Wang, PRL102 (2009) 162003; Z.G. Hue et al., PRD81 (2010) 054036 • $e^+e^- \rightarrow J/\psi gg$ CO at NLO: 0.9-1.0 pb using universality from the Tevatron (Academical) reduction by a factor of 3 of the LDMEs, if one ignores the CSM

イロト 不得下 イヨト イヨト 二日

• Constraints from the P_T dependence in pp

• Computation at NLO for CO channel: CO predictions overshoot data at low P_T

B. Gong, X. Q. Li, J.-X. Wang, PLB 673:197,2009.

The P_T dependence is badly reproduced and cannot be properly fit

- Strong constraints from the e^+e^- analyses
 - Recent update by Belle of $e^+e^- \rightarrow J/\psi + X_{non\ c\bar{c}} = 0.43 \pm 0.09 \pm 0.09$ pb • $e^+e^- \rightarrow J/\psi gg$ CS at NLO + rel. corr. : 0.4-0.7 pb

no space for CO $({}^{1}S_{0} \text{ or } {}^{3}P_{J})$ in *B*-factory data

Y.Q.Ma, et al., PRL102 (2009)162002;B.Gong, J.X.Wang, PRL102 (2009) 162003; Z.G. Hue et al., PRD81 (2010) 054036 • $e^+e^- \rightarrow J/\psi gg$ CO at NLO: 0.9-1.0 pb using universality from the Tevatron (Academical) reduction by a factor of 3 of the LDMEs, if one ignores the CSM

Y. Zhang et al., PRD81:034015,2010.

 Actually, the reduction is much stronger and the CS channel dominates over CO at low/mid P_T in pp_{a c}

Υ & ψ polarisation in hadroproduction at $\mathcal{O}(\alpha_S^4)$ & $\mathcal{O}(\alpha_S^5)$

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, Phys. Rev. Lett. 101,152001,2008 B. Gong, J.X Wang, Phys. Rev. Lett. 100,232001,2008. JPL, EPJC 61,693,2009. JPL, arXiv:1003.4319 [hep-ph]

(日) (周) (日) (日)

Υ & ψ polarisation in hadroproduction at $\mathcal{O}(\alpha_S^4)$ & $\mathcal{O}(\alpha_S^5)$

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, Phys. Rev. Lett. 101,152001,2008 B. Gong, J.X Wang, Phys. Rev. Lett. 100,232001,2008. JPL, EPJC 61,693,2009.

JPL, arXiv:1003.4319 [hep-ph]

Υ & ψ polarisation in hadroproduction at $\mathcal{O}(\alpha_S^4)$ & $\mathcal{O}(\alpha_S^5)$

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, Phys. Rev. Lett. 101,152001,2008 B. Gong, J.X Wang, Phys. Rev. Lett. 100,232001,2008. JPL, EPJC 61,693,2009. JPL, arXiv:1003.4319 [hep-ph]

→ Complete modification of the polarisation at NLO (also at NNLO*)

- \rightarrow Yield from k_T factorisation is also longitudinal (in the helicity frame)
- \rightarrow This is not yet explained by simple arguments

(although reasonable)

Part III

what we do not understand

J.P. Lansberg (Ecole Polytechnique–CPHT) Qua

Quarkonium production at the LHC

July 22, 2010 10 / 17

æ

(日) (同) (三) (三)

• Could simply be the colour octets $({}^{3}S_{1}^{[8]})$

< E

- Could simply be the colour octets $({}^{3}S_{1}^{[8]})$
- What about the polarisation measurement, then ?

-

- Could simply be the colour octets $({}^{3}S_{1}^{[8]})$
- What about the polarisation measurement, then ?

3

- E

- Could simply be the colour octets $({}^{3}S_{1}^{[8]})$
- What about the polarisation measurement, then ?

• Could be the data ...

3

- Could simply be the colour octets $({}^{3}S_{1}^{[8]})$
- What about the polarisation measurement, then ?

- Could be the data ...
- Let's wait for the LHC data for prompt $\psi(2S)$ or direct J/ψ

Part IV

what we expect from the LHC:

J.P. Lansberg (Ecole Polytechnique–CPHT) Qua

Quarkonium production at the LHC

July 22, 2010 12 / 17

3

< E

- ∢ ∃ ▶

Part IV

what we expect from the LHC: new measurements

J.P. Lansberg (Ecole Polytechnique–CPHT) Q

Quarkonium production at the LHC

July 22, 2010 12 / 17

• J/ψ + hadron azimuthal correlations

STAR Collab., Phys.Rev.C80:041902 (R),2009.

(本部) (本語) (本語)

• J/ψ + hadron azimuthal correlations

STAR Collab., Phys.Rev.C80:041902 (R),2009.

• PYTHIA might not be reliable (Color Singlet at LO: $gg \rightarrow J/\psi g$)

э

• J/ψ + hadron azimuthal correlations

STAR Collab., Phys.Rev.C80:041902 (R),2009.

- PYTHIA might not be reliable (Color Singlet at LO: $gg
 ightarrow J/\psi g$)
- Need for updates with NLO and NNLO^{*} $(gg \rightarrow J/\psi gg, gg \rightarrow J/\psi ggg)$

-

< ∃ >

• J/ψ + hadron azimuthal correlations

STAR Collab., Phys.Rev.C80:041902 (R),2009.

- PYTHIA might not be reliable (Color Singlet at LO: $gg \rightarrow J/\psi g$)
- Need for updates with NLO and NNLO^{*} $(gg \rightarrow J/\psi gg, gg \rightarrow J/\psi ggg)$

• $J/\psi + D$ or J/ψ +lepton: peak at $\Delta \phi = \pi$ in the yield integrated over P_T S. J. Brodsky and JPL, PRD 81 051502 (R), 2010

J.P. Lansberg (Ecole Polytechnique-CPHT)

•
$$J/\psi + \gamma$$

J.P. Lansberg (Ecole Polytechnique–CPHT) Quar

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

- $J/\psi + \gamma$
 - CS rate at NLO \simeq conservative (high) expectation from CO

R.Li and J.X. Wang, PLB 672:51,2009

(日) (周) (三) (三)

- $J/\psi + \gamma$
 - $\bullet\,$ CS rate at NLO \simeq conservative (high) expectation from CO

R.Li and J.X. Wang, PLB 672:51,2009

• A priori, no real new info on the relative importance of CS vs CO

(日) (同) (三) (三)

- $J/\psi + \gamma$
 - CS rate at NLO \simeq conservative (high) expectation from CO

R.Li and J.X. Wang, PLB 672:51,2009

- A priori, no real new info on the relative importance of CS vs CO
- But...

JPL. PLB 679:340.2009.

- $J/\psi + \gamma$
 - CS rate at NLO \simeq conservative (high) expectation from CO

R.Li and J.X. Wang, PLB 672:51,2009

• A priori, no real new info on the relative importance of CS vs CO

• But...

Polarisation

J.P. Lansberg (Ecole Polytechnique–CPHT) Quarko

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Polarisation

• of direct yields of $\Upsilon(3S)$, then others

3

(日) (同) (三) (三)

- Polarisation
 - of direct yields of $\Upsilon(3S)$, then others
 - polarisation of the χ_Q (angular dependence of the γ)

- Polarisation
 - of direct yields of $\Upsilon(3S)$, then others
 - polarisation of the χ_Q (angular dependence of the γ)
 - rapidity dependence of the polarisation

- Polarisation
 - of direct yields of $\Upsilon(3S)$, then others
 - polarisation of the χ_Q (angular dependence of the γ)
 - rapidity dependence of the polarisation
 - ϕ angular dependence of the leptonic decay

- Polarisation
 - of direct yields of $\Upsilon(3S)$, then others
 - polarisation of the χ_Q (angular dependence of the γ)
 - rapidity dependence of the polarisation
 - ϕ angular dependence of the leptonic decay
 - polarisation in different frames

- Polarisation
 - of direct yields of $\Upsilon(3S)$, then others
 - polarisation of the χ_Q (angular dependence of the γ)
 - rapidity dependence of the polarisation
 - ϕ angular dependence of the leptonic decay
 - polarisation in different frames
- $J/\psi + J/\psi$, $J/\psi + \Upsilon$

see C. Yu's talk during the first session

過 ト イヨ ト イヨト

- Polarisation
 - of direct yields of $\Upsilon(3S)$, then others
 - polarisation of the χ_Q (angular dependence of the γ)
 - rapidity dependence of the polarisation
 - ${\scriptstyle \bullet } \phi$ angular dependence of the leptonic decay
 - polarisation in different frames

•
$$J/\psi + J/\psi$$
, $J/\psi + \Upsilon$

see C. Yu's talk during the first session

• strong sensitivity on the CO LDME ${}^{3}S_{1}^{[8]}$

- Polarisation
 - of direct yields of $\Upsilon(3S)$, then others
 - polarisation of the χ_Q (angular dependence of the γ)
 - rapidity dependence of the polarisation
 - ${\scriptstyle \bullet } \phi$ angular dependence of the leptonic decay
 - polarisation in different frames

•
$$J/\psi + J/\psi$$
, $J/\psi + \Upsilon$

see C. Yu's talk during the first session

- strong sensitivity on the CO LDME ${}^{3}S_{1}^{[8]}$
- would help to understand large P_T inclusive production

- Polarisation
 - of direct yields of $\Upsilon(3S)$, then others
 - polarisation of the χ_Q (angular dependence of the γ)
 - rapidity dependence of the polarisation
 - ${\scriptstyle \bullet } \phi$ angular dependence of the leptonic decay
 - polarisation in different frames

•
$$J/\psi + J/\psi$$
, $J/\psi + \Upsilon$

see C. Yu's talk during the first session

< 回 ト < 三 ト < 三 ト

- strong sensitivity on the CO LDME ${}^{3}S_{1}^{[8]}$
- would help to understand large P_T inclusive production
- Quarkonium studies via *pp* decay

- Polarisation
 - of direct yields of $\Upsilon(3S)$, then others
 - polarisation of the χ_Q (angular dependence of the γ)
 - rapidity dependence of the polarisation
 - ${\scriptstyle \bullet } \phi$ angular dependence of the leptonic decay
 - polarisation in different frames

•
$$J/\psi + J/\psi$$
, $J/\psi + \Upsilon$

see C. Yu's talk during the first session

- 4 週 ト - 4 三 ト - 4 三 ト

- strong sensitivity on the CO LDME ${}^{3}S_{1}^{[8]}$
- would help to understand large P_T inclusive production
- Quarkonium studies via *pp* decay
 - planned by LHC-b

E SQA

- Polarisation
 - of direct yields of $\Upsilon(3S)$, then others
 - polarisation of the χ_Q (angular dependence of the γ)
 - rapidity dependence of the polarisation
 - ${\scriptstyle \bullet } \phi$ angular dependence of the leptonic decay
 - polarisation in different frames

•
$$J/\psi + J/\psi$$
, $J/\psi + \Upsilon$

see C. Yu's talk during the first session

- 4 同 6 4 日 6 4 日 6

- strong sensitivity on the CO LDME ${}^{3}S_{1}^{[8]}$
- would help to understand large P_T inclusive production
- Quarkonium studies via *pp* decay
 - planned by LHC-b
 - allow to study h_c as well as ψ

- Polarisation
 - of direct yields of $\Upsilon(3S)$, then others
 - polarisation of the χ_Q (angular dependence of the γ)
 - rapidity dependence of the polarisation
 - $\bullet \ \phi$ angular dependence of the leptonic decay
 - polarisation in different frames

•
$$J/\psi + J/\psi$$
, $J/\psi + \Upsilon$

see C. Yu's talk during the first session

- strong sensitivity on the CO LDME ${}^{3}S_{1}^{[8]}$
- would help to understand large P_T inclusive production
- Quarkonium studies via *pp* decay
 - planned by LHC-b
 - allow to study $\mathit{h_c}$ as well as ψ
 - maybe different acceptances, nice cross check

J.P. Lansberg (Ecole Polytechnique-CPHT)

Quarkonium production at the LHC

July 22, 2010 15 / 17

E 990

Part V

Conclusions and Outlooks

J.P. Lansberg (Ecole Polytechnique–CPHT) Qu

Quarkonium production at the LHC

July 22, 2010 16 / 17

æ

• LO pQCD (CSM) fails as far as $d\sigma/dP_T$ is concerned

→ Ξ →

Image: A math a math

- LO pQCD (CSM) fails as far as $d\sigma/dP_T$ is concerned
- Yet, the LO (and NLO) CSM reproduces the yield: relevant for heavy-ion studies !

- LO pQCD (CSM) fails as far as $d\sigma/dP_T$ is concerned
- Yet, the LO (and NLO) CSM reproduces the yield:

relevant for heavy-ion studies !

• Agrees with the strong reduction of CO contributions at low/mid P_T expected from e^+e^- analyses

- LO pQCD (CSM) fails as far as $d\sigma/dP_T$ is concerned
- Yet, the LO (and NLO) CSM reproduces the yield:

relevant for heavy-ion studies !

- Agrees with the strong reduction of CO contributions at low/mid P_T expected from e^+e^- analyses
- Moreover, QCD-corrections bring agreements for $d\sigma/dP_T$ in
 - γp for J/ψ M.Kramer Nucl.Phys.B459:3 1996
 - pp for Υ (Tevatron) P.Artoisenet, J.Campbell, JPL, et al. PRL101, 152001 (2008)
 - pp for ψ (RHIC, Tevatron) (gap at large P_T)

P.Artoisenet, AIP PC 1038.55.2008. JPL, EPJC 61:693,2009 JPL arXiv:1003.4319 [hep-ph]

イロト イポト イヨト イヨト

Drawback: large theoretical uncertainties...

- LO pQCD (CSM) fails as far as $d\sigma/dP_T$ is concerned
- Yet, the LO (and NLO) CSM reproduces the yield:

relevant for heavy-ion studies !

- Agrees with the strong reduction of CO contributions at low/mid P_T expected from e^+e^- analyses
- Moreover, QCD-corrections bring agreements for $d\sigma/dP_T$ in
 - γp for J/ψ M.Kramer Nucl.Phys.B459:3 1996
 - pp for Υ (Tevatron) P.Artoisenet, J.Campbell, JPL, *et al*. PRL101, 152001 (2008)
 - *pp* for ψ (RHIC, Tevatron) (gap at large P_T)^{P.Arto}
- P.Artoisenet, AIP PC 1038,55,2008. JPL, EPJC 61:693,2009 JPL arXiv:1003.4319 [hep-ph]

イロト 不得下 イヨト イヨト

- Drawback: large theoretical uncertainties...
- The time has come for another look with **new observables** at the LHC or elsewhere !

- 3