Paris, ICHEP 2010 July 24th, 2010

Prompt photons, forward jets and subjets at HERA

Juan Terrón (Universidad Autónoma de Madrid, Spain)

H1 and ZEUS Collaborations

• Outline

- \rightarrow Isolated photons in neutral current DIS ep
- \rightarrow Isolated photons in photoproduction (γp collisions)
- \rightarrow Forward jet production in NC DIS ep
- \rightarrow Three-subjet production in NC DIS ep

Kinematics of Neutral Current Deep Inelastic Scattering

Isolated-photon production in NC DIS

- Production of isolated photons in NC DIS constitutes a clean probe of pQCD and a benchmark for SM-background calculations in the search for new physics involving final-state photons
- SM calculations:
- → LL: wide-angle radiation from the electron line (low-angle radiation suppressed)
- \rightarrow QQ: radiation from a quark line

(direct radiation or fragmentation; fragmentation suppressed by isolation requirement)

- \rightarrow LQ: the interference is expected to be small
- Photon candidates: compact EM clusters in calorimeter; no associated track; isolated.
- Jets are reconstructed applying the k_T -cluster algorithm with D = 1 over all final-state particles, including photon candidates \rightarrow isolation condition: the jet containing the γ should fulfill $E_T^{\gamma}/E_T^{\gamma-\text{jet}} > 0.9 \implies$ Isolated- γ signal extracted using shower shapes

J Terrón (Madrid)

Paris, ICHEP 2010

Measurements of inclusive isolated photons in NC DIS (I)

• Measurement of inclusive isolated photon production with $4 < E_T^{\gamma} < 15$ GeV and $-0.7 < \eta^{\gamma} < 0.9$ in the kinematic region defined by $10 < Q^2 < 350$ GeV², $W_X > 5$ GeV, $E'_e > 10$ GeV and $139.8^{\circ} < \theta_e < 171.8^{\circ}$ using $\mathcal{L} = 320$ pb⁻¹

- Comparison to MC (DJANGOH+PYTHIA) calculations
 - \rightarrow good description of the data
 - \implies this is achieved by scaling the QQ contribution by a factor 1.6

Measurements of inclusive isolated photons in NC DIS (II)

Comparison to theoretical calculations:

• GGP (Gehrmann-De Ridder, Gehrmann, Poulsen): $\mathcal{O}(lpha^3)$ calculations of

QQ+LL+LQ. The QQ contribution includes both wide-angle emission and fragmentation \Rightarrow good description of shapes; normalization 20% too low

MRST (Martin, Roberts, Stirling, Thorne): inclusion of QED corrections gives rise to a photonic component of the proton; LL contribution enhanced by DGLAP resummation; QQ not included. ⇒ below data except at high E^γ_T, backward η^γ (QQ suppressed)
QQ(GGP)+MRST gives an improved description of the data

J Terrón (Madrid)

Measurements of inclusive isolated photons in NC DIS (III)

• Comparison to theoretical calculations: \Rightarrow failure at low Q^2 and low x

Further theoretical investigations needed!

Prompt-photon production in γp interactions

- Production of prompt photons in γp interactions (photoproduction, $Q^2 \approx 0$) is sensitive to \rightarrow proton and photon PDFs with lower hadronization corrections than in jet production
- Benchmark for pQCD calculations:

- \rightarrow fixed-order (NLO) QCD calculations in the collinear approach including direct and resolved-photon processes
- \rightarrow calculations based on k_T -factorization approach and using unintegrated PDFs; direct and resolved-photon processes included
- \Rightarrow Calculations corrected for hadronization/multiple interactions/different isolation (th.)
- Photon candidates: compact EM clusters in calorimeter; no associated track.
- Jets are reconstructed applying the k_T -cluster algorithm with D = 1 over all final-state particles, including photon candidates \rightarrow isolation condition: the jet containing the γ should fulfill $E_T^{\gamma}/E_T^{\gamma-\text{jet}} > 0.9 \implies$ Isolated- γ signal extracted using shower shapes

Measurements of inclusive prompt-photon production

- \rightarrow NLO (FGH; Fontannaz, Guillet, Heinrich) and k_T fact. (LZ; Lipatov, Zotov)
 - ightarrow Data above pQCD, most significantly at low E_T^γ
 - \rightarrow LZ reproduces the shape in η^{γ} while FGH is significantly below the data for $\eta^{\gamma} < 0.9$

Prompt-photons + Jets (I)

• Measurement of prompt photon+jet production in the kinematic region defined by $Q^2 < 1 \text{ GeV}^2$ and 0.1 < y < 0.7for photons with $E_T^{\gamma}/E_T^{\gamma-\text{jet}} > 0.9$, $6 < E_T^{\gamma} < 15 \text{ GeV}$ and $-1 < \eta^{\gamma} < 2.4$ and for jets with $E_T^{jet} > 4.5 \text{ GeV}$ and $-1.3 < \eta^{jet} < 2.3 \text{ using } \mathcal{L} = 340 \text{ pb}^{-1}$

• Comparison to calculations:

 \rightarrow LZ and FGH give a reasonable description of the cross sections in E_T^γ and E_T^{jet}

 \rightarrow both show deficits in the shape in η^{jet}

ightarrow FGH too low for $\eta^{\gamma} < 0.2$

Paris, ICHEP 2010

Parton evolution at low x

X_{Bi}

Azimuthal correlations between the scattered positron and forward jets

• Quark Parton Model: $\rightarrow \Delta \Phi = \pi$

•
$$\mathcal{O}(\alpha_s)$$
 corrections:
 $ightarrow \Delta \Phi \leq \pi$ (decorrelation)

• BFKL-induced effects: $\rightarrow \Delta \Phi \leq \pi$ (stronger decorrelation) \rightarrow stronger decorrelation as x_{iet}/x increases

• Jets are reconstructed using the inclusive k_T algorithm in the Breit frame and boosted back into the LAB: 7° $< \theta_{jet} < 20^{\circ}, p_{t,jet} > 6$ GeV and $x_{jet} = E_{jet}/E_p > 0.035$

- ightarrow kinematic region: 5 < Q^2 < 85 GeV², 0.1 < y < 0.7, 10^{-4} < x < 4 \cdot 10^{-3}
- ightarrow suppression of DGLAP evolution: $0.5 < p_{t,jet}^2/Q^2 < 6$

Azimuthal correlations between the scattered positron and forward jets

Forward jet azimuthal correlations

• Measurement of the differential cross-section $d\sigma/d\Delta\phi$ as a function of $\Delta\phi$, the difference in azimuth between the scattered positron and the most forward jet in three regions of $\ln (x_{jet}/x)$ (increasing lengths for BFKL evolution)

- Comparison to MC predictions:
- → **RAPGAP** (**DGLAP** evolution)
- \rightarrow CDM (no k_T ordering; BFKL-like)
- → CASCADE (CCFM evolution)
- \Rightarrow A stronger decorrelation in $\Delta \phi$ as $\ln (x_{jet}/x)$ increases is observed!
- \rightarrow The models predict similar shapes (!), all of them consistent with the data
- \rightarrow Significant differences in normalization between the models
- \Rightarrow Comparison to higher-order QCD calculations needed to draw firm conclusions

Subjets

⇒ Understanding jet substructure is becoming more and more relevant for boosted systems such as hadronic top decays, Higgs and supersymmetric final states at the LHC

Many subjets

4 subjets

2 subjets

1 subjet

JET

• Subjets are resolved within a jet by reapplying the k_T algorithm on all the particles belonging to the jet until for every pair of particles the distance betwen clusters is above

 $d_{cut} = y_{cut} \cdot (E_T^{jet})^2$

- \rightarrow all remaining clusters are called subjets
- ightarrow the subjet multiplicity depends upon y_{cut}
- \rightarrow the distributions of subjets are sensitive to the pattern of parton radiation
- Jets (and subjets) are reconstructed in the <u>laboratory frame since NLO QCD</u> calculations are possible. At $\mathcal{O}(\alpha_s^3)$, up to 4 partons can be in the same jet (not possible in the Breit frame) • Jets (and subjets) are reconstructed in the $\frac{1}{2}$ $\frac{1}{$

Three-Subjet Variables in NC DIS

• The pattern of QCD radiation from a primary parton has been studied by measuring normalised cross sections as functions of the subjet variables E_T^{sbj}/E_T^{jet} , $\eta^{sbj} - \eta^{jet}$, $|\phi^{sbj} - \phi^{jet}|$ and the angle β^{sbj} in the η - ϕ plane of the laboratory frame between the subjet with lowest E_T and the proton beam direction, as viewed from the jet centre

• Predicted cross section at $\mathcal{O}(\alpha_s^2)$ for three-subjet production (colour configurations)

 $\sigma_{ep \to 3 \text{ subjets}} = C_F^2 \cdot \sigma_A + C_F C_A \cdot \sigma_B + C_F T_F \cdot \sigma_C + T_F C_A \cdot \sigma_D$

• Since the couplings qqg and ggg have different spin structures, the color factors give rise to a specific pattern of angular correlations between the subjets

Paris, ICHEP 2010

φ

Measurements of Three-Subjet Distributions in NC DIS (I)

• Measurements of the normalised cross sections for three-subjet production as functions of E_T^{sbj}/E_T^{jet} , $\eta^{sbj} - \eta^{jet}$ and $|\phi^{sbj} - \phi^{jet}|$ in NC DIS for $Q^2 > 125 \text{ GeV}^2$ for jets with $E_T^{jet} > 14 \text{ GeV}$ and $-1 < \eta^{jet} < 2.5$ and exactly THREE subjets at $y_{cut} = 0.01$ $\rightarrow \mathcal{L} = 299 \text{ pb}^{-1} \Rightarrow 80\ 000 \text{ jets}$ LO and NLO QCD calculations using NLOJET++

 \rightarrow Good description of the measured distributions in E_T^{sbj}/E_T^{jet} and $\eta^{sbj} - \eta^{jet}$ by NLO \rightarrow Reasonable description of the measured distribution in $|\phi^{sbj} - \phi^{jet}|$ by NLO

Measurements of Three-Subjet Distributions in NC DIS (II)

• Measurements of the normalised cross sections for three-subjet production as functions of β^{sbj} and $\eta^{sbj}_{low} - \eta^{jet}$ vs LO and NLO QCD calculations

 \rightarrow Additional cut to "separate" lowest- E_T subjet: $(E_{T,mid}^{sbj} - E_{T,low}^{sbj})/E_T^{jet} > 0.2$

ZEUS

 \rightarrow Good description of the measured distributions by NLO QCD

Paris, ICHEP 2010

Measurements of Three-Subjet Distributions in NC DIS (III)

• Measurements of the normalised cross sections for three-subjet production as functions of β^{sbj} and $\eta^{sbj}_{low} - \eta^{jet}$ vs LO calculations assuming different gauge symmetry groups ZEUS

- \rightarrow U(1)³ vs SU(3): some differences are observed in the β^{sbj} distribution
- \rightarrow The predictions of SU(3) describe reasonably well the data

Summary: exploration of parton dynamics at low x and in jet substructure

• Measurements of prompt- γ and prompt- γ +jet in **NC DIS and photoproduction** \rightarrow **Theoretical** approaches fail in some regions, particularly at low xand correlations in the transverse plane

 \rightarrow Challenge to theory

- Measurements of azimuthal correlations between the scattered positron and the most forward jet at low x
- \rightarrow A stronger decorrelation in $\Delta \phi$ as $\ln (x_{jet}/x)$ increases is observed!

x^{LO} < 0.8

H1

- \rightarrow CCFM, DGLAP and CDM predict similar shapes, all consistent with the data \Rightarrow higher-order QCD calculations needed!
- Measurements of three-subjet production in NC DIS for jets with $E_T^{jet} > 14$ GeV using $\mathcal{L} = 299$ pb⁻¹
- \rightarrow the pattern of QCD radiation as implemented in the NLO calculations reproduces the measured subjet distributions
- \rightarrow the subjet distributions are sensitive to the colour configurations and are found to be consistent with the predictions of SU(3)

ZEUS

Extraction of the isolated-photon signal

• Extraction of signal by a χ^2 fit to the $\langle \delta z \rangle$ distribution in each cross-section bin

Extraction of the prompt-photon signal

- Photon candidates: compact EM clusters in calorimeter; no associated track.
- Jets are reconstructed applying the k_T -cluster algorithm with D = 1 over all final-state particles, including photon candidates \rightarrow isolation condition: the jet containing the γ should fulfill $E_T^{\gamma}/E_T^{\gamma-\text{jet}} > 0.9 \implies$ Isolated- γ signal extracted using shower shapes
- Probability density functions are defined and a discriminator is formed
- A regularised unfolding procedure is used to determine the corrected variables and the fractions of signal and background

J Terrón (Madrid)

Paris, ICHEP 2010

July 24th, 2010

Inclusive prompt-photons (II)

• Measurement of inclusive prompt photon production in the kinematic region defined by $Q^2 < 1$ GeV² and 0.1 < y < 0.7for photons with $E_T^{\gamma}/E_T^{\gamma-\text{jet}} > 0.9$, $6 < E_T^{\gamma} < 15$ GeV and $-1 < \eta^{\gamma} < 2.4$ using $\mathcal{L} = 340$ pb⁻¹

• Comparison to calculations:

ightarrow LZ provides a reasonable description of the data except for the lowest E_T^{γ} bin in the central region (0.2 < η^{γ} < 0.9)

ightarrow FGH underestimates the data in the central and backward regions ($\eta^{\gamma} < -0.6$)

corr. error

12

14 Ε_Τ [GeV]

10

Paris, ICHEP 2010

۲

• Estimators of the momentum fractions of the partons in the incoming photon and proton:

ightarrow parton in the incoming photon: $x_{\gamma}^{LO} = E_T^{\gamma} (e^{-\eta^{jet}} + e^{-\eta^{\gamma}})/(2yE_e)$

 \rightarrow parton in the incoming proton: $x_p^{LO} = E_T^{\gamma} (e^{\eta^{jet}} + e^{\eta^{\gamma}})/(2E_p)$

• LZ and FGH describe the data within errors

Measurements of Three-Subjet Distributions in NC DIS

- Measurements of the normalised cross sections in NC DIS for $Q^2 > 125 \text{ GeV}^2$: \rightarrow Jets with $E_T^{jet} > 14 \text{ GeV}$ and $-1 < \eta^{jet} < 2.5$
- \rightarrow Selected sample of jets: jets with exactly THREE subjets at $y_{cut} = 0.01$

 $\rightarrow \mathcal{L} = 299 \text{ pb}^{-1} \Rightarrow 80\ 000 \text{ jets}$

J Terrón (Madrid)

Paris, ICHEP 2010

July 24th, 2010