Precision DIS measurements at HERA

Burkard Reisert

Max-Planck-Institut für Physik München
on behalf of the H1 and ZEUS Collaborations

New Measurements:

- Electro Weak Physics
- Longitudinal Structure Function
- Total γ p Cross Section

HERA ep Collider: 1992-2007

Two colliding beam experiments: H 1 and ZEUS $\sim 0.5 \mathrm{fb}^{-1}$ collected pre experiment approximately same amount of collisions with electrons and positrons of Left- and right-handed polarisation

$\mathrm{E}_{\mathrm{e}}=27.5 \mathrm{GeV}, \mathrm{E}_{\mathrm{p}}=920 \mathrm{GeV}$ dedicated low Ep runs $\mathrm{Ep}=460 \mathrm{GeV}, 575 \mathrm{GeV}$

Deep Inelastic Scattering (DIS)

Neutral Current (NC)

Centre-of-mass
energy $s=(k+P)^{2}=\frac{Q^{2}}{x y}$

Boson virtuality

$$
Q^{2}=-q^{2}=\left(k-k^{\prime}\right)^{2}
$$

Bjorken $\mathrm{x} \quad x=\frac{Q^{2}}{2(P q)}$
Inelasticity $y=\frac{(P q)}{(P k)}$
Charged Current (CC)

Neutral Current Cross Section

$$
\frac{d^{2} \sigma^{N C}\left(e^{ \pm} p\right)}{d x d Q^{2}}=\frac{2 \pi \alpha^{2}}{x Q^{4}}\left[Y_{+} \tilde{F}_{2}^{\mp} \mp Y_{-} x \tilde{F}_{3}^{ \pm}-y^{2} \tilde{F}_{L}^{ \pm}\right] \quad \begin{array}{r}
Y_{ \pm}=1 \pm(1-y)^{2} \\
\kappa=\frac{1}{4 \sin ^{2} \theta_{0} \cos ^{2} \theta_{m} \theta_{0}} \frac{Q^{2}+N_{2}}{}
\end{array}
$$

Generalized structure functions:

$$
\begin{gathered}
\tilde{F}_{2}^{ \pm}=F_{2}^{\gamma}+\kappa\left(-v_{e} \pm P_{e} a_{e}\right) F_{2}^{\gamma Z}+\kappa^{2}\left(v_{e}^{2}+a_{e}^{2} \pm 2 P_{e} v_{e} a_{e}\right) F_{2}^{Z} \\
x \tilde{F}_{3}^{ \pm}=\kappa\left(-a_{e} \mp P_{e} v_{e}\right) x F_{3}^{\gamma Z}+\kappa^{2}\left(2 v_{e} a_{e} \pm P_{e}\left(v_{e}^{2}+a_{e}^{2}\right)\right) x F_{3}^{Z} \\
{\left[F_{2}^{\gamma}, F_{2}^{\gamma Z}, F_{2}^{Z}\right]=\sum_{q}\left[e_{q}^{2}, 2 e_{q} v_{q}, v_{q}^{2}+a_{q}^{2}\right] x(q+\bar{q})} \\
{\left[x F_{3}^{\gamma Z}, x F_{3}^{Z}\right]=\sum_{q}\left[e_{q} a_{q}, v_{q} a_{q}\right] 2 x(q-\bar{q})}
\end{gathered}
$$

Charged Current Cross Section

$$
\frac{d^{2} \sigma^{C C}\left(e^{ \pm} p\right)}{d x d Q^{2}}=\left(1 \pm P_{e}\right) \frac{G_{F}^{2}}{4 \pi x}\left(\frac{M_{W}^{2}}{M_{W}^{2}+Q^{2}}\right)^{2} \tilde{\sigma}_{C C}^{e^{ \pm} p}
$$

CC reduced
cross section
$\mathrm{e}^{+} / \mathrm{e}^{-}$sensitive to different quark densities:

$$
\begin{gathered}
\tilde{\sigma}_{C C}^{e^{+} p}=x[\bar{u}+\bar{c}]+(1-y)^{2} x[d+s] \\
\tilde{\sigma}_{C C}^{e^{-} p}=x[u+c]+(1-y)^{2} x[\bar{d}+\bar{s}]
\end{gathered}
$$

CC gives sensitivity to different combinations of quarks as NC.

Electroweak Unification

HERA

difference in e^{+}and e^{-}for NC in high Q^{2} region comes from contribution of Z exchange

$$
\text { NC: } \frac{d \sigma}{d Q^{2}} \sim \frac{1}{Q^{4}}
$$

$$
\text { cc: } \frac{d \sigma}{d Q^{2}} \sim \frac{1}{\left(Q^{2}+M_{W}^{2}\right)^{2}}
$$

EW component of SM:

NC and CC cross sections are similar at $\mathrm{Q}^{2} \approx \mathrm{M}_{\mathrm{z}}{ }^{2}, \mathrm{M}_{\mathrm{w}}{ }^{2}$

Data compared with SM (HERAPDF $1.0 \rightarrow$ V. Radescu Track04) Good agreement over full range

Total Charged Current Cross Section

Linear dependence of $\sigma^{C C}$ on P_{e}

$$
\begin{array}{r}
\sigma^{C C}\left(e^{ \pm} p\right)=\left(1 \pm P_{e}\right) \sigma_{P_{e}=0}^{C C}\left(e^{ \pm} p\right) \\
P_{e}=\frac{N_{R H}-N_{L H}}{N_{R H}+N_{L H}}
\end{array}
$$

SM: weak CC interactions:
only left handed particles (right handed anti-particles) interact

SM: No right-handed weak currents

ZEUS and H 1 in agreement with SM

Polarised CC Cross Sections

Predictions of SM give good description of data

Quark Antiquark Decomposition

Data of the entire HERA II data sets (LH and RH, corrected to $\mathrm{P}_{\mathrm{e}}=0$)

H1 Preliminary

ZEUS

H1 + ZEUS Cross Section Combinations \rightarrow talk by Voica Radescu

Neutral Current: xF_{3}

NC cross section:

$$
\tilde{\sigma}^{ \pm}=\frac{d^{2} \sigma^{N C}\left(e^{ \pm} p\right)}{d x d Q^{2}} \frac{x Q^{4}}{2 \pi \alpha^{2}} \frac{1}{Y_{+}}=\tilde{F}_{2} \mp \frac{Y_{-}}{Y_{+}} x \tilde{F}_{3}-\frac{y^{2}}{Y_{+}} \tilde{F}_{L}
$$

$$
\rightarrow \quad x \tilde{F}_{3}=\frac{Y_{+}}{2 Y_{-}}\left[\tilde{\sigma}^{-}-\tilde{\sigma}^{+}\right]
$$

dominant contribution to XF_{3} :

NC at High x: Motivation

H 1 and ZEUS have measured
NC cross sections up to $x_{\text {max }}=0.65$
(Fixed Target experiments e.g. BCDMS $\mathrm{x}_{\max }=0.75$)

- PDFs at $x \rightarrow 1$ largely undetermined
- Variations between various PDFs sets larger than uncertainty estimates

We cannot measure $x>x_{\text {limit, }}$, however we know $x_{\text {limit }}<x<1$
\rightarrow High x constraint by integrated cross section

NC at High x: Results

ZEUS

Measurement of FL

Measure cross sections
$\sigma_{r}=F_{2}\left(x, Q^{2}\right)-\frac{y^{2}}{Y_{+}} F_{L}\left(x, Q^{2}\right)$ at same x and Q^{2} but different $y=Q^{2} / x \cdot s^{+} \rightarrow$ vary s

- Change proton beam energy to change cms energy
$-\mathrm{E}_{\mathrm{p}}=920 \mathrm{GeV}$, High Energy Run (HER)
- $\mathrm{E}_{\mathrm{p}}=575 \mathrm{GeV}$, Medium Energy Run (MER):
- $\mathrm{E}_{\mathrm{p}}=460 \mathrm{GeV}$, Low Energy Run
- Large lever arm in y^{2} / Y_{+}
- Measure at high y in LER
- Extended measurement to high y region $y=1-E_{e}^{\prime} / E_{e}(1-\cos \theta) \rightarrow$ high y means low E_{e}^{\prime}

Combined low E_{p} Cross Sections

H1 Preliminary

Extracted F_{L} and F_{2}

ZEUS

- First F_{2} measurement without assumptions on F_{L}
- Data support a non-zero F_{L}
- Predictions for F_{2} and F_{L} are consistent with data

H1 + ZEUS Combined F

H1 and ZEUS

Good agreement between data and predictions for $\mathrm{Q}^{2>10 ~ G e V}{ }^{2}$.
F_{L} at low Q^{2} above prediction using HERAPDF1.0

Variants of Predictions for F_{L}

H 1 and ZEUS

Burkard Reisert, Precision DIS at HERA, ICHEP, Paris, July 22-28

Extension of σ @ high y to low Q²

ZEUS

ZEUS

Data agree well with previous ZEUS measurements Increase overlap with H1 at low Q^{2}

Total Photon-Proton Cross Section

ZEUS

Measurements at 3 proton energies Slope with $\mathrm{W}_{\text {pp }}$ locally extracted

ZEUS

Summary

- HERA delivered a wealth of ep DIS data
- H1 and ZEUS measurements reach their ultimate precision
- HERA is a unique place to study
the structure of the proton

Results to Cover

- NC e-p: DESY-08-202
- CC e-p: DESY-08-177
- CC e+p: ZEUS-pub-10-004
- NC e-p high x ZEUS-prel-10-007
- H1+ZEUS comb F2cc:

ZEUS-prel-09-015
\rightarrow Comb. + QCD Fit of F2cc Massimo Corradi, track 04

- FL: DESY-09-046
- extension to low Q^{2}, high y ZEUS-prel-10-006
- Total Cross Section ZEUS-prel-10-011
- NC at medium Q2: DESY-09-005
- low Q2, low x : DESY-08-171
- Polarized CC: H1prelim-09-043
- Polarized NC: H1 prelim-09-042
\rightarrow V. Chekelian, track 02
- Comb. inclusive cross sections DESY-09-158 \rightarrow combination and QCD analysis V. Radescu, track 04
- FL extended Q2 H1 prelim-09-044
- Combined low Ep cross section and FL extraction H1 prelim-10-043

Backup

Polarized NC measurements

The charge dependent polarization asymmetries in neutral currents \rightarrow direct measure of EW effects

Polarization asymmetries (A) sensitive to ratio of γZ interference term to F_{2} A is proportional to $a_{e} v_{q}$ combination

$$
A \pm=\frac{2}{P_{R}-P_{L}} \frac{\sigma^{ \pm}\left(P_{R}\right)-\sigma^{ \pm}\left(P_{L}\right)}{\sigma^{ \pm}\left(P_{R}\right)+\sigma^{ \pm}\left(P_{L}\right)} \simeq \mp \kappa a_{e} \frac{F_{2}^{\gamma Z}}{F_{2}}
$$

neglecting Z term, the generalized structure function F_{2} is expressed:

$$
\begin{gathered}
\tilde{F}_{2}^{ \pm} \approx F_{2}^{\gamma}+\kappa\left(-v_{e} \pm P_{e} a_{e}\right) F_{2}^{\gamma Z} \\
\text { At LO: } F_{2}^{\gamma Z}=x \sum_{q} 2 e_{q} v_{q}(q+\bar{q}) \\
\text { Data well described by SM }
\end{gathered}
$$

F_{2} at medium Q^{2}

New measurement ($\mathrm{L}=22 \mathrm{pb}^{-1}, 2000$) combined with published results (96/97)

$$
s_{r} \sim F_{2}\left(12<Q^{2}<150 \mathrm{GeV}^{2}, y<0.6\right)
$$

Steep rise described by QCD

Rise compatible with $F_{2} \propto x^{-\lambda}$

Effect of Gluon dynamics well described by fit

(1iib)
 NC Measurement at low Q ${ }^{2}$

-Measurement presented as effective $\gamma^{*} p$ cross section

- precision of combined measurements better than 2\%

