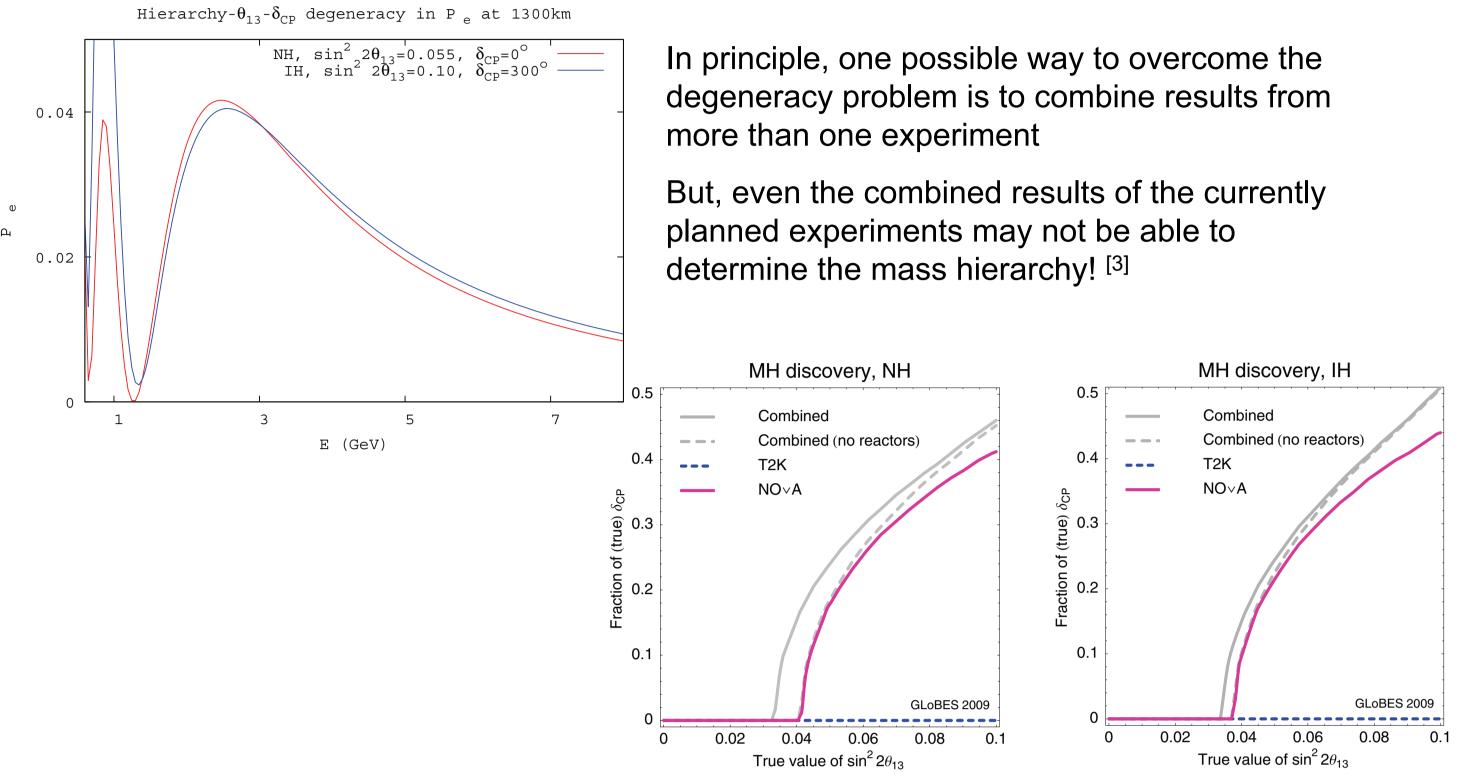
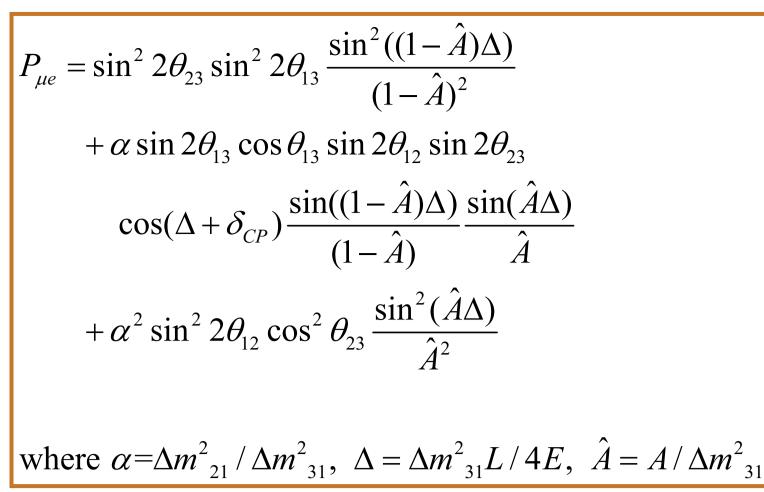
1. Introduction

 $P_{\alpha\beta}$ (θ₁₂, θ₁₃, θ₂₃, Δm²₃₁, Δm²₂₁, δ_{CP})


Current unknowns:


• sgn(Δm_{31}^2) : NH or IH

- $sin^2 2\theta_{13}$
- δ_{cp}

P_{ue} oscillation channel in the earth (expanded perturbatively alongside ^[1]) is sensitive to all of these, therefore a good candidate

The main problem in determining these unknowns: Parameter degeneracy ^[2], i.e. $\mathsf{P}_{ue}(\mathsf{NH}, \theta_{13}, \delta_{\mathsf{CP}}) = \mathsf{P}_{ue}(\mathsf{IH}, \theta'_{13}, \delta'_{\mathsf{CP}})$

2. The magic baseline concept

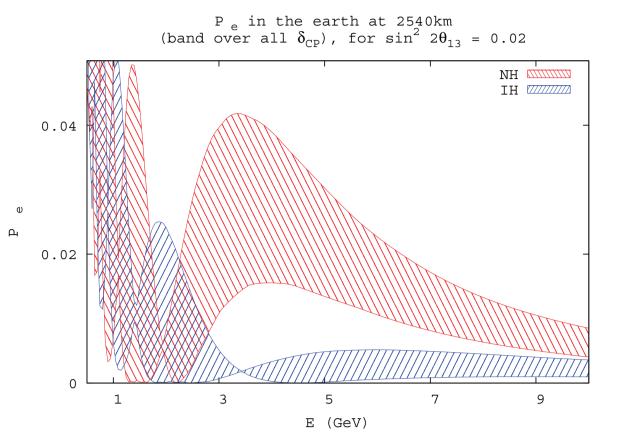
Setting sin($\hat{A}\Delta$)=0 makes the δ_{CP} dependent term in P_{ue} vanish, thus making the probability independent of δ_{CP} ^[4]. Solving this equation gives the required baseline, L = 7500 km. This condition is independent of the neutrino energy, E.

This magic baseline idea :

is good

 because it eliminates the effect of δ_{CP} , and the mass hierarchy can be determined independent of it

3. Our proposal

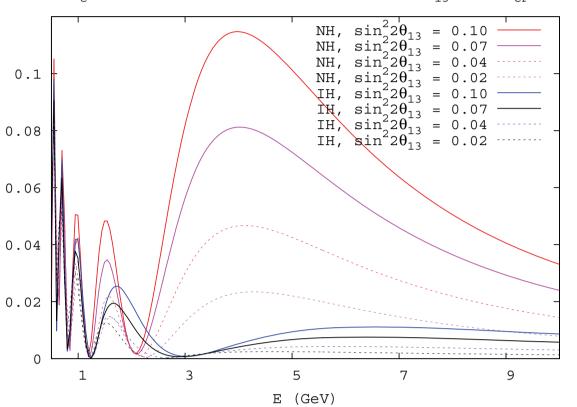

Instead of manipulating $sin(\hat{A}\Delta)$, we manipulate sin((1-Â)∆)

Note that $sin((1-\hat{A})\Delta)$ is a hierarchy dependent term, so using it amounts to imposing one condition for NH and another for IH

For IH: we impose $(1-\hat{A})\Delta = -\pi$, i.e. δ_{CP} independence for IH (and this also makes the probability very small)

has drawbacks

- because the long baseline requires an intense beam from a (currently) futuristic source
- because this experiment cannot make any statement regarding δ_{CP}



For NH: we impose $(1-\hat{A})\Delta = \pi/2$, i.e. NH maximized, for good distinction from IH

Thus, we have **1.27** ($|\Delta m_{31}^2|$ +**A**)L/E = π and **1.27** ($|\Delta m_{31}^2|$ -A)L/E = $\pi/2$

Solving these conditions simultaneously gives L = 2540 km and E = 3.3 GeV

2540 km is the distance from Brookhaven NL to Homestake ^[5], and the NuMI flux in medium energy tuning peaks around 3.5 GeV at locations 7 mr off-axis ^[6]

P in the earth at 2540km for various θ_{13} ; and $\delta_{CP}=0$

Magical properties of a 2540 km Superbeam expt

8000

4000

2000

unoscillated events ^[5]

Determination of the v mass hierarchy, and other possibilities...

Sushant K. Raut, Ravi S. Singh and S. Uma Sankar

(Department of Physics, Indian Institute of Technology – Bombay, Mumbai)

4. The experimental setup

• The beam

A NuMI-like beam : 7.3×10^{20} POT (120 GeV protons) in the medium energy option, located at Brookhaven ^[7]. This is perfectly feasible since the 6000 technology required for this beam is already available!

The detector

A 300 kton liquid scintillator detector 2540 km away at Homestake mine. The beam is oriented such that the detector location is 7mr off the beam axis.

5. Numerical Analysis

- Energy range 0.8-10 GeV, divided into 0.4 GeV bins
- Energy smeared with a Gaussian distribution, using a (rather conservative) resolution of σ = 0.15 E
- E (GeV • Backgrounds due to beam v_e and NC events assumed to be 1% of the

NuMI v flux: 2540km, 7mr off-axis

• Systematics included using method of pulls^[8]: 2% uncertainty in flux, 2% in

sin²2θ ₁₃ true (D-Chooz range)	Exposure (NH) kt yr	Exposure (IH) kt yr
0.1	2.93	6.39
0.09	3.34	6.04
0.08	3.94	5.69
0.07	4.77	5.38
0.06	6.04	4.95
0.05	8.19	4.55

sin²2θ ₁₃ true (Daya Bay range)	Exposure (NH) kt yr	Exposure (IH) kt yr
0.05	7.32	91.68
0.04	10.69	86.80
0.03	18.97	81.16
0.02	49.83	71.50

Exposures required to distinguish between the hierarchies at 3σ level

Thus, mass hierarchy determination is possible using a **single baseline** in neutrino mode only, using current technology for the beam and with moderate exposure in the detector, irrespective of the value of δ_{CP}

6. Future work

- A detailed analysis of the NC backgrounds involved is needed
- It may be possible to use this setup to probe δ_{CP}
- Combining this data with NOvA and Daya Bay will give better results
- Combined neutrino and antineutrino data will give better results

detector systematics, 10% in cross section

- $\sin^2\theta_{12} = 0.31$, $\Delta m^2_{21} = 8 \times 10^{-5} \text{ eV}^2$ (fixed)
- $\sin^2\theta_{23} = 0.50$, $|\Delta m^2_{31}| = 2.5 \times 10^{-3} \text{ eV}^2$ (marginalized over $3\sigma = 6\%$ range)
- δ_{CP} allowed to vary over its entire allowed range in 45° steps
- True values of $sin^22\theta_{13}$ considered in two ranges, from 0.05 to 0.10 (Double Chooz range) and from 0.02 to 0.05 (Daya Bay range)
- Both possibilities, NH and IH considered as the true hierarchy
- The experiment is run only in the neutrino mode

• A beta beam experiment at this baseline and energy will give a clean signal, since the P_{eu} channel is almost free of backgrounds

References

[1] A. Cervera et al, Nucl. Phys. B 579, 17 (2001); M. Freund, Phys. Rev. D 64, 053003 (2001); E. Akhmedov et al., JHEP 0404, 078 (2004)

[2] V. Barger et al., Phys. Rev. D 66, 053007 (2002); K. Hagiwara et al., Phys. Lett. B 637, 266 (2006); O. Mena et al., Phys. Rev. D 72, 053002 (2005)

[3] P. Huber et al., JHEP 0911, 044 (2009)

[4] V. Barger et al., Phys. Rev. D 65, 073023 (2002); P. Huber et al., Phys. Rev. D 68, 037301 (2003); A. Smirnov, hep-ph/0610198

[5] M. Diwan et al., Phys. Rev. D 68, 012002 (2003)

[6] D.S. Ayres et al. (NOvA), hep-ex/0503053

[7] Website of M. Messier: http://enrico1.physics.indiana.edu/messier/off-axis/spectra/

[8] G.L. Fogli et al., Phys. Rev. D 66, 053010 (2002); G.L. Fogli et al., Phys. Rev. D 67, 093006 (2003); M.C. Gonzalez-Garcia et al., Phys. Rev. D 70, 033010 (2004)