

MOTIVATION

$$B o \pi \ell
u : rac{d\Gamma}{dq^2} = |V_{ub}|^2 rac{G_F^2 |\vec{p}_{\pi}|^3}{24\pi^3} |f_+(q^2)|^2$$
 $B o
ho \ell
u : rac{d\Gamma}{dq^2} = |V_{ub}|^2 rac{G_F^2 |\vec{p}_{
ho}|^3}{96\pi^3} |F_{
ho}(q^2)|^2$

Physics Goals

- Measure $|V_{ub}|$
- Test QCD calculations of form factors

Measure $\mathcal{B}(q^2)$ of $B o (\pi^\pm/\pi^0/
ho^\pm/
ho^0)\ell
u$

Data sample: 377 million $B\overline{B}$ pairs.

MOTIVATION

$$B \to \pi \ell \nu : \frac{d\Gamma}{dq^2} = |V_{ub}|^2 \frac{G_F^2 |\vec{p}_{\pi}|^3}{24\pi^3} |f_+(q^2)|^2$$

$$R, \rho \quad B \to \rho \ell \nu : \frac{d\Gamma}{dq^2} = |V_{ub}|^2 \frac{G_F^2 |\vec{p}_{\rho}| q^2 m_B^2}{96\pi^3} |F_{\rho}(q^2)|^2$$

Physics Goals

- Measure $|V_{ub}|$
- Test QCD calculations of form factors

Measure $\mathcal{B}(q^2)$ of $B \to (\pi^{\pm}/\pi^0/\rho^{\pm}/\rho^0)\ell\nu$

Data sample: 377 million $B\overline{B}$ pairs.

SIGNAL CANDIDATE SELECTION

NEURAL NET BACKGROUND SUPPRESSION

- Neural nets trained against each of 3 backgrounds, in each q² bin
- Sample plots shown for B⁰→π⁻ℓ⁺ν in 3 selected q² bins

Continuum background Jet-like events differ from isotropic B decays $B \rightarrow X_c lv$ background largest background, $\Gamma(b \rightarrow c lv) \sim 50 \times \Gamma(b \rightarrow u lv)$

 $B \rightarrow X_u lv$ background Mostly at high q^2 , hard to separate

B⁰ $\rightarrow \pi^- \ell^+ \nu$ S/B before NN = 3% B⁰ $\rightarrow \pi^- \ell^+ \nu$ S/B after NN = 12%

B—π lv YIELDS

binned ML fit in $m_{\rm ES}$, ΔE , and q^2 for $B \to (\pi^{\pm}/\pi^{0}/\rho^{\pm}/\rho^{0})\ell\nu$ simultaneously, with isospin constraint

 $B^0 \to \pi^- \ell^+ \nu$ in 6 q^2 bins

$$m_{ES} = \sqrt{\left(\frac{s/2 + \vec{p}_{beams} \cdot \vec{p}_{B}}{E_{beams}}\right)^{2} - \vec{p}}$$

$$\Delta E = \frac{p_{beams} \cdot p_B}{\sqrt{s}} - \frac{\sqrt{s}}{2}$$

Signal peaks at $\Delta E =$

Single mode yields

4-mode yield used to find BF

 $B^0 \to \pi^- \ell^+ \nu$ 7181 ± 279 $B^+ \to \pi^0 \ell^+ \nu$ 3446 ± 208 $B \to \pi \ell \nu$ 10604 ± 376

$${\cal B}(B^0 o\pi^-\ell^+
u) = (1.41\pm 0.05_{\it stat}\pm 0.07_{\it syst}) imes 10^{-4}$$

 $\sigma_{\text{stat}} = 3.5\%$; $\sigma_{\text{syst}} = 5.0\%$; $\sigma_{\text{tot}} = 6.1\%$

B→ρℓν YIELDS

binned ML fit in $m_{\rm ES}$, ΔE , and q^2 for $B \to (\pi^\pm/\pi^0/\rho^\pm/\rho^0)\ell\nu$ simultaneously, with isospin constraint

Large $B \rightarrow X_u lv$ background is highly correlated with signal and must be fixed in the fit.

$B^0 \to \rho^- \ell^+ \nu$	1577 ± 130	=
$B^+ o ho^0 \ell^+ u$	1970 ± 154	
$B o ho \ell u$	3332 ± 286	- -

Smaller yield than $B \rightarrow \pi l v$

$$\mathcal{B}(B^0 o
ho^- \ell^+
u) = (1.75 \pm 0.15_{stat} \pm 0.27_{syst}) imes 10^{-4}$$

 $\sigma_{\text{stat}} = 8.6\%$; $\sigma_{\text{syst}} = 15\%$; $\sigma_{\text{tot}} = 18\%$

		· · · · · · · · · · · · · · · · · · ·
Systematic errors	$B o\pi\ell u$	$B o ho\ell u$
detector effects	3.2%	4.9%
K_L simulation	3.0%	7.5%
$B o (\pi/ ho)\ell u$ FF	2.2%	9.4%
$B \to X_u \ell \nu$ bkgd.	0.9%	12.9%
$B o X_c \ell \nu$ bkgd.	1.0%	1.5%
<i>q</i> ā bkgd.	2.0%	4.0%
other effects	1.5%	2.5%
Total	5.0%	15.7%

FORM FACTOR PARAMETERIZATIONS

$f_+(q^2)$ parameterizations

1 param. Becirevic, Kaidalov (BK)

Phys Lett B 478, 417 (2000)

2 param. Ball, Zwicky (BZ)

PLB 644, 38 (2007)

n param. Bourrely, Caprini, Lellouch (BCL)

PRD 79, 013008 (2009)

n param. Boyd, Grinstein, Lebed (BGL)

PRL 56, 303 (1997)

Data BABAR10 BK BZ ---- BCL (3 par.) BGL (3 par.) 6 4 Shaded band indicates uncertainty on BGL fit. 00 5 10 15 20 q^2 (GeV 2)

- BCL and BGL expansions avoid ad hoc assumptions and are based on fundamental QCD concepts.
- We use BGL 3-parameter fit as default (consistent with BGL 2-parameters).

q² spectrum corrected for detector efficiency & resolution, bremsstrahlung, and radiative effects

All 4 parameterizations agree with each other and are consistent with the data.

COMPARISON WITH THEORY

Probability of agreement with theory

Calculation	$Prob(\chi^2,ndf)$
HPQCD	13%
PRD 73, 074502 (2006)	0.2%
PRD 52, 2783 (1995) LCSR	$< 10^{-5}$
PRD 71, 014015 (2005)	

- Probabilities exclude theory errors and use full q² range.
- Calculations valid only for partial q² range.

Errors too large to distinguish between $B \rightarrow \rho \ell \nu$ predictions.

Vub FROM PARTIAL q² RANGE

Solve rate equation for $|V_{ub}|$

$$|V_{ub}| = \sqrt{rac{\Delta \mathcal{B}(q_{min}^2, q_{max}^2)}{ au_0 \; \Delta \zeta(q_{min}^2, q_{max}^2)}}$$

$$\Delta\zeta(q_{min}^2, q_{max}^2) = \frac{G_F^2}{24\pi^3} \int_{q_{min}^2}^{q_{max}^2} p_{\pi}^3 \frac{|f_+(q^2)|^2}{|f_+(q^2)|^2} dq^2$$

Probability of agreement with theory

Calculation	$Prob(\chi^2,ndf)$
HPQCD	13%
PRD 73, 074502 (2006)	0.2%
PRD 52, 2783 (1995) LCSR	$< 10^{-5}$
PRD 71, 014015 (2005)	

 Probabilities exclude theory
errors and use full q ² range.

• Calculations valid only for partial q² range.

 $|V_{ub}|(imes 10^{-3})$ LCSR $(q^2 < 16\,\mathrm{GeV^2})$ $3.63 \pm 0.12^{+0.59}_{-0.40}$ HPQCD $(q^2 > 16\,\mathrm{GeV^2})$ $3.21 \pm 0.17^{+0.55}_{-0.36}$

 σ_{exp} = 3-5%; σ_{thy} = ~15% Theory error dominates

| V_{ub}| FROM FULL q² RANGE

Simultaneous fit to data and theory

- 3 parameters: BGL quadratic polynomial
- 4th parameter: relative normalization between theory and data, $\alpha \, |V_{ub}|^2$
- Theory points are correlated, so not all are used in fit.

$$|V_{ub}| = (2.99 \pm 0.35) \times 10^{-3}$$
 HPQCD (1 point)
 $|V_{ub}| = (2.92 \pm 0.37) \times 10^{-3}$ FNAL/MILC (1 point)
 $|V_{ub}| = (2.95 \pm 0.31) \times 10^{-3}$ FNAL/MILC (4 points)

 $\sigma(\text{data BF}) = 3\%$ $\sigma(\text{data q}^2 \text{ shape}) = 5\%$ $\sigma(\text{theory FF norm.}) = 8.5\%$ $\sigma_{\text{total}} = 10.5\%$

Errors reduced compared to |V_{ub}| from partial q² range

CONCLUSION

Most precise branching fraction measurements:

- BF(B⁰
$$\rightarrow \pi^- \ell^+ \nu$$
) = (1.41 ± 0.05 ± 0.07) × 10⁻⁴

- BF(B⁰
$$\rightarrow \rho^{-}\ell^{+}\nu$$
) = (1.75 ± 0.15 ± 0.27) × 10⁻⁴

- Tests of q² spectrum agreement with theoretical predictions.
- Determination of |V_{ub}|:
 - LCSR, low $q^2 = (3.63 \pm 0.12^{+0.59}_{-0.40}) \times 10^{-3}$
 - HPQCD, high $q^2 = (3.21 \pm 0.17^{+0.55}_{-0.36}) \times 10^{-3}$
 - FNAL/MILC, full $q^2 = (2.95 \pm 0.31) \times 10^{-3}$

UT Fit Values

- ★ average inclusive Global "all other" fit =
- $(3.48 \pm 0.16) \times 10^{-3}$

BACKUP

FORM FACTOR PARAMETERIZATIONS

$$\frac{d\Gamma(B^0 \to \pi^- \ell^+ \nu)}{dq^2} = |V_{ub}|^2 \frac{G_F^2 |\vec{p}_{\pi}|^3}{24\pi^3} |f_+(q^2)|^2$$

Becirevic-Kaidalov (BK)

$$\frac{f_{+}(q^{2})}{(1-q^{2}/m_{B^{*}}^{2})(1-\frac{\alpha_{BK}}{q^{2}/m_{B^{*}}^{2})}}$$

Ball-Zwicky (BZ)

$$\begin{array}{lcl} f_{+}(q^{2}) & = & f_{+}(0) \bigg[\frac{1}{1 - q^{2}/m_{B^{*}}^{2}} \\ & + & \frac{r_{BZ}q^{2}/m_{B^{*}}^{2}}{(1 - q^{2}/m_{B^{*}}^{2})(1 - \alpha_{BZ}q^{2}/m_{B^{*}}^{2})} \bigg] \end{array}$$

Boyd, Grinstein, Lebed (BGL)

$$\begin{aligned} f_{+}(q^2) &= \frac{1}{\mathcal{P}(q^2)\phi(q^2, q_0^2)} \sum_{k=0}^{k_{max}} \mathbf{a}_k(q_0^2) [z(q^2, \mathbf{q}_0^2)]^k \\ z(q^2, q_0^2) &= \frac{\sqrt{m_+^2 - q^2} - \sqrt{m_+^2 - q_0^2}}{\sqrt{m_+^2 - q^2} + \sqrt{m_+^2 - q_0^2}} \end{aligned}$$

Bourrely, Caprini, Lellouch (BCL)

$$f_{+}(q^{2}) = \frac{1}{1 - q^{2}/m_{B^{*}}^{2}} \sum_{k=0}^{k_{max}} b_{k}(q_{0}^{2})[[z(q^{2}, \frac{q_{0}^{2}}{q_{0}^{2}})]^{k}$$
$$-(-1)^{k - k_{max} - 1} \frac{k}{k_{max} + 1} [z(q^{2}, \frac{q_{0}^{2}}{q_{0}^{2}})]^{k_{max} + 1}]$$

Red-highlighted variables vary in the fit.

SYSTEMATIC UNCERTAINTIES

From combined 4-mode fit

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		В	\rightarrow	$\pi \ell \nu$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	q^2 range (GeV ²)	0-4	4-8	8-12	12-16	16-20	>20	0-26.4
Lepton identification 3.8 1.6 1.9 1.8 1.9 3.0 1.8 K_L efficiency 1.0 0.1 0.5 4.5 0.4 2.0 1.4 K_L shower energy 0.1 0.1 0.1 0.8 0.9 3.8 0.7 K_L spectrum 1.6 1.9 2.2 3.1 4.4 2.3 2.5 $B \to \pi \ell \nu FF f_+$ 0.5 0.5 0.5 0.6 1.0 1.0 0.6 $B \to \rho \ell \nu FF A_1$ 1.7 1.2 3.4 2.0 0.1 1.6 1.7 $B \to \rho \ell \nu FF A_2$ 1.3 0.8 2.6 1.0 0.1 0.4 1.1 $B \to \rho \ell \nu FF K_2$ 1.3 0.8 2.6 1.0 0.1 0.4 1.1 $B \to \rho \ell \nu FF V$ 0.2 0.3 0.9 0.7 0.1 0.5 0.5 $E(B^+ \to \nu \ell^+ \nu)$ 0.1 0.1 0.1 0.2 0.2 0.3 1.5 0.2 $E(B^+ \to \nu \ell^+ \nu)$ 0.1 0.1 0.1 0.2 0.2 0.2 0.5 0.2 $E(B^+ \to \nu \ell^+ \nu)$ 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.1 $E(B \to X_u \ell \nu)$ 0.2 0.1 0.1 0.1 0.1 1.1 1.6 0.4 $E(B \to X_u \ell \nu)$ 0.2 0.1 0.5 0.3 0.2 0.7 0.3 $E(B \to \nu \ell \nu)$ 0.2 0.1 0.5 0.3 0.2 0.7 0.3 $E(B \to \nu \ell \nu)$ 0.2 0.1 0.3 0.3 0.2 0.7 0.3 $E(B \to \nu \ell \nu)$ 0.5 0.5 0.2 0.1 0.5 0.3 0.2 0.7 0.3 $E(B \to \nu \ell \nu)$ 0.7 0.7 $E(B \to \nu \ell \nu)$ 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Track efficiency	3.4	1.5	2.3	0.1	1.5	2.8	1.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Photon efficiency	0.1	1.4	1.0	4.6	2.8	0.3	1.8
K_L shower energy 0.1 0.1 0.1 0.8 0.9 3.8 0.7 K_L spectrum 1.6 1.9 2.2 3.1 4.4 2.3 2.5 $B \to \pi \ell \nu FF f_+$ 0.5 0.5 0.5 0.6 1.0 1.0 0.6 $B \to \rho \ell \nu FF A_1$ 1.7 1.2 3.4 2.0 0.1 1.6 1.7 $B \to \rho \ell \nu FF A_2$ 1.3 0.8 2.6 1.0 0.1 0.4 1.1 $B \to \rho \ell \nu FF K_2$ 1.3 0.8 2.6 1.0 0.1 0.4 1.1 $B \to \rho \ell \nu FF K_2$ 0.2 0.3 0.9 0.7 0.1 0.5 0.5 $B(B^+ \to \nu \ell^+ \nu)$ 0.1 0.1 0.1 0.2 0.3 1.5 0.2 $B(B^+ \to \eta \ell^+ \nu)$ 0.1 0.1 0.1 0.2 0.2 0.2 0.5 0.2 $B(B^+ \to \eta^\prime \ell^+ \nu)$ 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.1 $B(B \to X_u \ell \nu)$ 0.2 0.1 0.1 0.1 0.1 1.1 1.6 0.4 $B \to X_u \ell \nu$ SF param. 0.4 0.1 0.2 0.2 0.5 4.2 0.7 $B \to D \ell \nu FF \rho_D^2$ 0.2 0.1 0.5 0.3 0.2 0.7 0.3 $B \to D^* \ell \nu FF R_1$ 0.1 0.4 0.8 0.6 0.3 0.6 0.5 $B \to D^* \ell \nu FF R_2$ 0.5 0.2 0.1 0.2 0.1 0.4 0.2 $B \to D^* \ell \nu FF \rho_D^2$ 0.2 0.2 0.3 0.4 0.5 0.5 0.3 $B(B \to D^* \ell \nu)$ 0.2 0.2 0.3 0.4 0.5 0.5 0.3 $B(B \to D^* \ell \nu)$ 0.4 0.1 0.1 0.1 0.3 0.1 0.5 0.2 $B(B \to D^* \ell \nu)$ 0.4 0.1 0.1 0.3 0.3 0.3 0.3 0.7 0.3 $B(B \to D^* \ell \nu)$ 0.4 0.1 0.1 0.1 0.5 0.1 0.2 0.2 $B(B \to D^* \ell \nu)$ 0.4 0.1 0.1 0.1 0.5 0.1 0.2 0.2 $B(B \to D^* \ell \nu)$ 0.4 0.1 0.1 0.1 0.5 0.1 0.2 0.2 $B(B \to D^* \ell \nu)$ 0.4 0.1 0.1 0.1 0.5 0.1 0.2 0.2 $B(B \to D^* \ell \nu)$ 0.4 0.1 0.1 0.1 0.5 0.1 0.2 0.2 $B(B \to D^* \ell \nu)$ 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	Lepton identification	3.8	1.6	1.9	1.8	1.9	3.0	1.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	K_L efficiency	1.0	0.1	0.5	4.5	0.4	2.0	1.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	K_L shower energy	0.1	0.1	0.1	0.8	0.9	3.8	0.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	K_L spectrum	1.6	1.9	2.2	3.1	4.4	$^{2.3}$	2.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$B \rightarrow \pi \ell \nu FF f_+$	0.5	0.5	0.5	0.6	1.0	1.0	0.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$B \rightarrow \rho \ell \nu FFA_1$	1.7	1.2	3.4	$^{2.0}$	0.1	1.6	1.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$B \rightarrow \rho \ell \nu FF A_2$	1.3	0.8	2.6	1.0	0.1	0.4	1.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$B \rightarrow \rho \ell \nu FFV$	0.2	0.3	0.9	0.7	0.1	0.5	0.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathcal{B}(B^+ \to \omega \ell^+ \nu)$	0.1	0.1	0.1	0.2	0.3	1.5	0.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathcal{B}(B^+ \to \eta \ell^+ \nu)$	0.1	0.1	0.2	0.2	0.2	0.5	0.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathcal{B}(B^+ \to \eta' \ell^+ \nu)$	0.1	0.1	0.1	0.1	0.1	0.3	0.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathcal{B}(B \to X_u \ell \nu)$	0.2	0.1	0.1	0.1	1.1	1.6	0.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$B \to X_u \ell \nu$ SF param.	0.4	0.1	0.2	0.2	0.5	4.2	0.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$B \rightarrow D\ell\nu \text{ FF } \rho_D^2$	0.2	0.1	0.5	0.3	0.2	0.7	0.3
$B \rightarrow D^* \ell \nu \ {\rm FF} \ \rho_{D^*}^2$ 0.7 0.2 0.6 0.8 0.4 1.1 0.6 ${\cal B}(B \rightarrow D\ell \nu)$ 0.2 0.2 0.3 0.4 0.5 0.5 0.3 ${\cal B}(B \rightarrow D^* \ell \nu)$ 0.4 0.1 0.3 0.3 0.3 0.7 0.3 ${\cal B}(B \rightarrow D^* \ell \nu)$ 0.4 0.1 0.1 0.3 0.1 0.5 0.2 ${\cal B}(B \rightarrow D^{**} \ell \nu)_{\rm narrow}$ 0.4 0.1 0.1 0.5 0.1 0.2 0.2 ${\cal B}(B \rightarrow D^{**} \ell \nu)_{\rm broad}$ 0.1 0.1 0.1 0.5 0.1 0.2 0.2 Secondary leptons 0.5 0.2 0.3 0.2 0.2 0.7 0.3 ${\rm Continuum}$ 5.3 1.0 2.6 1.8 3.1 6.1 2.0 ${\rm Bremsstrahlung}$ 0.3 0.1 0.1 0.1 0.1 0.1 0.4 0.2 ${\rm Radiative\ corrections}$ 0.5 0.1 0.1 0.2 0.2 0.6 0.3 ${\cal N}_{B\overline{B}}$ 1.2 1.0 1.2 1.2 1.1 1.6 1.2 ${\cal B}$ lifetimes 0.3 0.3 0.3 0.3 0.3 0.3 0.7 0.3 ${\it f}_{\pm}/\it{f}_{00}$ 1.0 0.4 0.8 0.8 0.5 1.3 0.8	$B \rightarrow D^* \ell \nu \text{ FF } R_1$	0.1	0.4	0.8	0.6	0.3	0.6	0.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$B \rightarrow D^* \ell \nu \text{ FF } R_2$	0.5	0.2	0.1	0.2	0.1	0.4	0.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$B \rightarrow D^* \ell \nu \text{ FF } \rho_{D^*}^2$	0.7	0.2	0.6	0.8	0.4	1.1	0.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathcal{B}(B \to D\ell\nu)$	0.2	0.2		0.4	0.5	0.5	0.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.4	0.1	0.3	0.3	0.3	0.7	0.3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathcal{B}(B \to D^{**} \ell \nu)_{narrow}$	0.4	0.1	0.1	0.3	0.1	0.5	0.2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathcal{B}(B \to D^{**} \ell \nu)_{broad}$	0.1	0.1		0.5	0.1	0.2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.5	0.2		0.2	0.2	0.7	0.3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Continuum	5.3	1.0	2.6	1.8	3.1	6.1	2.0
$N_{B\overline{B}}$ 1.2 1.0 1.2 1.2 1.1 1.6 1.2 B lifetimes 0.3 0.3 0.3 0.3 0.3 0.7 0.3 f_{\pm}/f_{00} 1.0 0.4 0.8 0.8 0.5 1.3 0.8	Bremsstrahlung	0.3	0.1	0.1	0.1	0.1	0.4	0.2
$B \text{ lifetimes}$ 0.3 0.3 0.3 0.3 0.7 0.3 f_{\pm}/f_{00} 1.0 0.4 0.8 0.8 0.5 1.3 0.8	Radiative corrections	0.5	0.1				0.6	
B lifetimes 0.3 0.3 0.3 0.3 0.3 0.7 0.3 f_{\pm}/f_{00} 1.0 0.4 0.8 0.8 0.5 1.3 0.8	$N_{B\overline{B}}$						1.6	
32/3	B lifetimes	0.3	0.3			0.3		0.3
Total syst. error 8.2 3.9 6.7 8.3 6.9 10.6 5.0	f_{\pm}/f_{00}						1.3	
	Total syst. error	8.2	3.9	6.7	8.3	6.9	10.6	5.0

$B \rightarrow$	ρίν			
q ² range (GeV ²)	0-8	8-16	>16	0-20.3
Track efficiency	3.2	2.9	0.3	2.5
Photon efficiency	2.6	2.0	2.6	2.4
Lepton Identification	5.7	3.0	4.0	3.4
K_L efficiency	10.3	1.2	4.9	4.8
K_L shower energy	1.6	0.8	1.0	1.1
K_L spectrum	4.2	6.1	7.0	5.7
$B \rightarrow \pi \ell \nu \text{ FF } f_+$	0.1	0.1	0.7	0.2
$B \rightarrow \rho \ell \nu \text{ FF } A_1$	10.7	6.6	4.5	7.5
$B \rightarrow \rho \ell \nu \text{ FF } A_2$	8.5	3.8	0.8	4.7
$B \rightarrow \rho \ell \nu \text{ FF } V$	3.4	3.0	3.6	3.2
$\mathcal{B}(B^+ \to \omega \ell^+ \nu)$	0.7	0.7	3.4	1.2
$\mathcal{B}(B^+ \to \eta \ell^+ \nu)$	0.8	0.1	0.6	0.4
$\mathcal{B}(B^+ \to \eta' \ell^+ \nu)$	0.8	0.5	1.2	0.7
$\mathcal{B}(B \to X_u \ell \nu)$	7.4	7.3	10.6	8.0
$B \to X_u \ell \nu$ SF param.	11.9	7.6	12.8	10.0
$B \rightarrow D\ell\nu \text{ FF } \rho_D^2$	0.9	0.2	0.1	0.4
$B \rightarrow D^* \ell \nu FF R_1$	0.7	0.1	0.3	0.3
$B \rightarrow D^* \ell \nu FF R_2$	1.7	0.1	0.2	0.6
$B \rightarrow D^* \ell \nu FF \rho_{D^*}^2$	$^{2.0}$	0.2	0.1	0.7
$\mathcal{B}(B \to D\ell\nu)$	1.6	0.3	0.1	0.7
$\mathcal{B}(B \to D^* \ell \nu)$	0.5	0.1	0.3	0.3
$\mathcal{B}(B \to D^{**}\ell\nu)_{narrow}$	1.3	0.1	0.1	0.5
$\mathcal{B}(B \to D^{**}\ell\nu)_{broad}$	0.7	0.1	0.1	0.3
Secondary leptons	1.5	0.1	0.1	0.5
Continuum	8.9	3.8	5.0	4.0
Bremsstrahlung	0.9	0.1	0.2	0.4
Radiative corrections	1.3	0.1	0.7	0.6
N _{BB}	2.7	2.0	2.5	2.3
B lifetimes	1.5	0.4	0.4	0.7
f_{\pm}/f_{00}	1.2	0.1	0.1	0.4
Total syst. error	26.1	16.1	21.3	15.7