Light Mesons and Strange Particle Production at HERA

Leszek Zawiejski Institute of Nuclear Physics PAN, Cracow on behalf of the ZEUS and H1 Collaborations

- Inclusive photoproduction of ρ⁰(770), K*⁰(892) and φ(1020)
- Strangeness production in DIS at low and high Q²
- Scaled momentum distribution for K⁰ and Λ particles in DIS
- Summary

HERA - Hamburg

ep collisions: hard and soft processes

 \rightarrow $\gamma^* p \rightarrow hadrons$

s : e-p c.m. energy, $\sqrt{S} \approx 300 - 318 \text{ GeV}$

 $\mathbf{Q}^2 = -\mathbf{q}^2$, 4-momentum transfer squared

x : fraction of p momentum carried by quark

y: inelasticity parameter

 \mathbf{W} : γ -p c.m. energy

y virtuality Q^{2:}

 Q^2 (GeV²) > 0 deep inelastic scattering (DIS)

 Q^2 (GeV²) ≈ 0 : (quasi) photoproduction

Hadronisation studies : non-perturbative process

Data:

Theoretical description:

- identified hadrons and resonances
- inclusive multihadron production

H1 and ZEUS experiments: total integrated luminosity ~ 0.5 fb⁻¹ pro experiment

- NLO QCD
- Monte Carlo (LO) QCD based models:
 ARIADNE + JETSET
 LEPTO + JETSET

Inclusive photoproduction of ρ^0 (770), K*⁰ (892), ϕ (1020) mesons at HERA

The inclusive differential cross sections as function of transverse momentum can be parametrized as power law distribution:

$$1/\pi d^2\sigma^{\gamma p} / dp^2 dy_{lab} = A / (E_{T0} + E^{kin})^n$$

Comparison ρ^0 , K^{*0} , ϕ mesons with other paricles:

H1: Phys.Lett. B 673 (2009) 119

More details:
see A. Rostovtsev talk (399)
at this conference
(Thursday 22 July)

The measured cross sections are well described by the power law distribution with the same n = 6.7.

Resonances with different masses, lifetimes and strangeness content are produced with about similar average transverse kinetic energy

→ support to thermodynamic picture of hadronic productions.

K_{s}^{0} and Λ production at low and high Q^{2}

Strange hadrons production, particularly baryons, is not well understood. Recent results from H1 and ZEUS extend knowledge on the fragmentation/ hadronisation process for strange particles production.

```
• H1: K_{S}^{0}, \Lambda, 2 < Q^{2} < 100 GeV^{2}, HERA I; Phys. J. C (2009) 61, 185: Strangeness production at low Q^{2} in deep-inelastic ep scattering at HERA • H1: K_{S}^{0}, 145 < Q^{2} < 20000 GeV^{2}, HERA II; Preliminary results, H1-prelim-10-031 • ZEUS: K_{S}^{0}, \Lambda, 10 < Q^{2} < 40000 GeV^{2}, HERA II; Preliminary results, ZEUS-prel-10-013
```

Goals:

LAB and the Breit frame measurements

- Test of models of fragmentation/hadronisation
- Test of λ_s universality (strangeness suppression factor)
- Fragmentation properties of K_{S}^{0} and Λ from scaled momentum distributions
- Test NLO QCD calculations and universality of factorization theorem

Main mechanisms of strange quark production

QPM, hard scattering of sea quark

Boson-gluon fusion

Heavy quark decay

Hadronisation

Next step: fragmentation to hadrons – non perturbative process is described by Lund string fragmentation model incorporated in Jetset Monte Calo

Simulation programs

plus Lund colour string model for hadronisation (JETSET)

In comparison of the measuremets with MC predictions: the values of strangeness suppression factor λ_s ($\lambda_s = P(s)/P(q)$; q = u,d): 0.22, 0.286 and 0.3 were used in MC. Other JETSET parameters used by ALEPH at LEP were taken as default: ($\lambda_{qq} = 0.108$: $\lambda_{qq} = P(qq)/P(q)$, $\lambda_{sq} = 0.690$: $\lambda_{sq} = (P(sq)/P(qq))/\lambda_s$)

K⁰_s production at low Q²

Laboratory frame (LAB): Differential cross sections -η and p_⊤ distributions

Flat K_s^0 production along η

MC predictions cannot describe the $~p_{T}$ distribution in the whole region. CDM with λ_{s} = 0.3 gives better description of the data but it overestimates the data in small $~p_{T}$ region.

Λ production at low Q²

LAB: Differential cross sections – η and p_T distributions

- Both MC predictions with different values of λ_s parameter used: λ_s = 0.22 or 0.3 cannot describe the data
- A rise in a forward direction is observed in the data

 $\begin{array}{l} \Lambda \ \ \, p_{\scriptscriptstyle T} \ \, distribution \ \, is \ \, not \ \, described \\ \ \ \, by \ \, CDM \ \, with \ \, \lambda_s = 0.3 : \\ \ \ \, CDM \ \, overestimates \ \, the \ \, data \ \, in \ \, low \ \, p_{\scriptscriptstyle T} \ \, region \end{array}$

Low Q²: $\Lambda - \overline{\Lambda}$ asymmetry and ratio Λ / K_s^0

LAB:

Within the experimental uncertainties no baryon antibaryon asymmetry was found → No evidence for a transfer of the baryon number from the proton beam to the final state strange particles

- The ratio is almost not sensitive to changes in λ_s
- The CDM and MEPS predictions underestimate the ratio.
- At large, positive η , a rise is observed in the data

K₀ production at high Q²

LAB: Differential cross sections - η and p_T distributions CDM and MEPS predictions with:

 $\lambda_s = 0.22$ used in low Q² measurements and

 $\lambda_s = 0.286$ - used by ALEPH for e⁺e⁻ LEP data

Agreement between data and Monte Carlo (MEPS and CDM) predictions for $\lambda_s = 0.286$

Low Q²: K⁰_s in the Breit frame

- Separates struck quark (current hemisphere) and proton remnant (target hemisphere)
- Fragmentation studies based on scaled momentum distribution
 x_D = 2 p^{Breit} / Q
- Current region is analogous to single hemisphere of e⁺e⁻ annihilation

- The measured x- section in target region is ~ one order of magnitude larger than in the current region.
- The p_T distributions are not described
 by MEPS or CDM
- The current region is less sensitive to λ_s than target region
 - → small statistics available large errors
- → a fraction of strangeness production in perturbative processes achieve ~ 50 % in comparison to ~25 % for target region

Low Q^2 : Λ in the Breit frame

The similar behavior as for K^os is observed:

- Cross section in target region is significantly larger than in current region.
- The p_T distributions are not described by MC.
 They tend to be softer than in data.
- The ~50 % contribution to strangeness production in the current region comes from perturbative processes

Scaled momentum distribution for K_{S}^{0} and Λ in DIS

Motivation:

Comparison of K_{S}^{0} and Λ production in the current fragmentation region of DIS with NL0 QCD calculations plus fragmentation functions (FF).

FF: fits to II, Ip and pp data; scaling violations in Q² are expected.

NLO QCD:

```
d\sigma/dx_p = f(x,Q^2) \otimes \sigma(Q^2) \otimes D(z,Q^2) - universality of factorization theorem f(x,Q^2) - parton density in proton \sigma(Q^2) - hard-scattering process - NLO (full matrix elements) D(z,Q^2) - fragmentation function: probablity for a parton to fragment into a hadron carrying fraction of its momentum
```

Two different predictions were compared to the data:

AKK + CYCLOPS (S. Albino, B. A.Kniehl, G. Kramer) -

- → FFs were obtained from fits to e⁺e⁻ data,
- → hadrons mass effect was included

DSS (D. de Florian, R. Sassot, M. Stratmann)

- → FFs were obtained from fits to lp and pp data,
- hadron mass effect was not included

K_{s}^{0} : scaled momentum distributions x_{p} and QCD predictions

ZEUS: Preliminary results

Current hemisphere of the Breit frame (CBF)

- Scaling violations are observed
- QCD NLO predictions describe the data only in certain regions of the phase space
- LO predictions:
 ARIADNE (CDM) and LEPTO (MEPS)
 describe the data in full phase space
- Hadron mass effect included in AKK+CYCLOP prediction improve agreement with the data for small $x_{\scriptscriptstyle D}$ and Q

A measurement and QCD predictions

CBF: ZEUS : Preliminary results

- Scaling violations are observed
- NLO QCD prediction does not descibe the data
- LO predictions:
 ARIADNE and LEPTO
 supply much better description of the data in most parts of phase space

Scaled momentum distribution for K_{S}^{0} and Λ at low and high Q^{2}

CBF:

ZEUS: Preliminary results

- NLO QCD predictions describe the data in the high Q² region and high x_p
- LO MC (ARIADNE, LEPTO) gives a reasonable description of the data in full phase space

Summary

Inclusive, light mesons and strange particles production give good tests of the hadronisation models:

- A power law distribution describes the differential cross sections for production light mesons as function of transverse momentum.
- The mesons are produced with similar value of the average transverse kinetic energy → this supports a thermodynamic picture of hadronic interactions
- ${\rm K^0}_{\rm S}$ and Λ cross sections, as measured in LAB and the Breit frame, cannot be descibed at low Q² by CDM or MEPS MC using a single value of strangeness suppression factor $\lambda_{\rm s}$.
 - For high Q^2 , MC with $\lambda_s = 0.286$, gives good description of the data
- Scaled momentum distributions show scaling violations
- NLO QCD predictions for different fragmentation functions, describe the data only in certain regions of the phase space.
- LO Monte Carlo (ARIADNE, LEPTO) predictions supply better agreement with data in full phase space
- We hope that the results will be useful to constrain the theoretical uncertainties in a description of the Λ hadrons .