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@ Briefly: theory same sign lepton CP violation (CPV).

® General interpretation + linkage (?) with CPV in B, mixing

=> model indep’ interpretation.

€ Minimalism: MFV explanation & GMFV (general minimal flavor violation).

® New realization: ultra-natural warped model & flavor triviality.

¢ Summary.
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D¢ reports 3.20 in dimuon asymimetry:;
CDF improves Al'g vs. Sy 77

DO It: asr = Ny =N, (9.574£2.51£1.46) x 1073
° a = — — (9. . . :
¢ result: as. NN
1005.2757.
fragmentation aly, = (0.506 % 0.043) ady + (0.494 % 0.043) afy .

correlates B, — B,

Grossman, Nir & Raz, PRL (06).

¢ Data favors NP in By : (@gL)exp < a’gL = gy, ™ a’gL

® Requires large new phase, ag;, = - |%

12

sin(¢ar — ¢r).
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¢ Origin of phase! AT'YY & overcome SM tree level

and not violate other CPV, ex.: b — st17.

Dighe, Kundu & Nandi [0705.4547, 1005.4051]
Bauer & Dunn [1006.1629]

¢ Assuming no direct CP <> NP contributes to SM

suppressed amplitudes => correlation \w other observables:
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¢ Origin of phase! AT'YY & overcome SM tree level

and not violate other CPV, ex.: b — s7T7~

Dighe, Kundu & Nandi [0705.4547, 1005.4051]
Bauer & Dunn [1006.1629]

¢ Assuming no direct CP <> NP contributes to SM

suppressed amplitudes => correlation \w other observables:

algL _ ‘AF ‘ quﬁ /\/1 S¢¢ : Ligeti, Papucci & GP, PRL (06);

m Grossman, Nir & GP, PRL (09).
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Correlation with Al'g vs. Sy

(more exciting results just after this talk)

¢ DO result can be written as:

-|AT,| ~ Am, (2.0d%, — 1.0ag,) \/1 ~ 82,/ Sys.

Ligeti, Papucci, GP & Zupan [1006.0432].
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Combining ad; & AT vs. Sy

‘ ConSiStency CheCI(: Ligeti, Papucci, GP, Zupan.

b . _
(a31) pes : IAT,| ~ (0.28 +0.15) /1T — Syo/Sye ps "

(S¢¢)CDF+D® I (AT, Sys) ~ (0.15ps™", 0.5)

¢ Can use data to fit AI'; => no theory involved.




Model independent
Interpretation




Global NP fit

Ligeti, Papucci, GP, Zupan.

¢ Clean NP interpretation: M{%* = (M5*)™" (1 4 by, ¥7%2) .

(Al is taken from the fit — not theory involved)

h; : magnitude of NP normalized to SM.

o; : NP relative phase.

Amg, = AmCS]M }1 -+ hqezwq} :

Al'y = AFEM COS [arg (1 + hse%"Sﬂ :
AL, = T (Tl [MEN (1 + yeo0)] )
SyKr = sin [26 + arg (1 - hde%adﬂ :
Sye = sin [23; — arg (1 + hse®7*)] .




Global fit’s results

Ligeti, Papucci, GP, Zupan.

SM

B4 vs. B, systems
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Global fit’s results

Ligeti, Papucci, GP, Zupan.

SM

07

B4 vs. B, systems
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Data favors
hs > hd
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Allowed regions in the B, & B, systems.
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The allowed ranges of hs, o, (left) and hg, 04 (right) from the combined fit to all four NP parameters.
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Universal case: hgy = hy, o4 = 04

Viable with some tension.
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The allowed hp, 0 range assuming SU (2) universality.
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Lessons from the data, model indep’

¢ Tension with SM null prediction.
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Lessons from the data, model indep’

¢ Tension with SM null prediction.

¢ SU(2)q approx’ universality, b, ~ h 4, can accommodate

data; arise in many models with NP effects via 3rd gen’.

¢ However, data favors hg > h,seems more challenging.

(most theoretical explanation involved tuning of parameters)
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Some Model Dependent Implications
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GMFV: (i) EFT (i) Higgs exchange (iii) warped Xtra dim’
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GMFV (general minimal flavor violation): simple
framework that account for data

¢ MFV (@TeV) + flavor diag’ phases => O(1) CPV in b->d,s.

Colangelo, et al. (09); Kagan, et al. (09).

@ MFV is a natural limit of many theories & by analyzing the data within

MFV we learn about the necessary NP structure that can explain it.

@ Surprisingly it can accommodate both above cases:

(1) heg ~ hg, (2) he > hg.

15



GMFV: LinearMFV vs NonLMFV
& CPV

Kagan, GP, Volansky & Zupan (09);
2 x Gedalia, Mannelli & GP (10).




What defines MFV Pheno’?

¢ Is CPV is broken only by the Yukawa or flavor diag’ phase

are present!

¢ Is the down type flavor group is broken “strongly”?

¢ |s the up type flavor group is broken “strongly”?

17



Linear MFV vs. non-linear MFV (NLMFV)

Kagan, GP, Volansky & Zupan (09).

The top Yukawa is large (possibly also bottom one) no
justification to treat it perturbatively.

“LO” MFV expansion valid only for Qf(e,Yy,caYp)Q

€u,d < 1

Large ”logs” or anomalous dim’ => €, 4 = O(1)
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Linear MFV vs. non-linear MFV (NLMFV)

Kagan, GP, Volansky & Zupan (09).

The top Yukawa is large (possibly also bottom one) no
justification to treat it perturbatively.

“LO” MFV expansion valid only for Qf(e,Yy,caYp)Q

€u,d < 1

Large ”logs” or anomalous dim’ => €, 4 = O(1)

We distinguish between 2 cases LMFV & NLMFV:

e Linear MFV (LMFV): €, 4 < 1 and the dominant flavor breaking effects are captured by the lowest order
polynomials of Y, 4.

e Non-linear MF'V (NLMFV): €, 4 ~ O(1), higher powers of Y,, 4 are important, and a truncated expansion in y;
is not possible.

18



What defines MFV Pheno’?

¢ If flavor diag’ phase are present then one can get large
b->d,s CPV with: (BS)CPV > (Bd)(jpv or hs > hd

Kagan, GP, Volansky & Zupan (09).

¢ Only if down type flavor group is broken “strongly” then
we can expect (B;)cpy > (Bg)cpv or hs > hy

Since new non-universal CPV o< [Y, YT, YdeT]

Gedalia, Mannelli & GP (10);
Blum, Hochberg & Nir (10).
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MFYV, effective operators

Ligeti, Papucci, GP, Zupan.

® Universal solution: (ks ~ hyg)

Avirvii2,s 2 {8.8, 13yp, 6.8y} /0.2/hy TeV .

01" = b7 b vudr, O = bai bpar
¢ Non-univ. solution: (ks > hy)
C m Am [,
Oy = A2 Q3(AT ANYy)3:d;] [ds(YTA TAPT):SZQZ]
MFV:4

AvEvia 2

> 13.29, v/ ms/mp TeV = 2.9, TeV .
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Scalar exchange

Buras, et al. (10); Dobrescu, et al. (10); Jung, et al. (10); Nir et al. (10).

¢ 2HDM a natural arena to generate flavor & CPV within MFV.

¢ Universal solution can easily be generated via (),

¢ Non-univ. solution only if O 4 > O5
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Vector exchange (KK gluon)

Delaunay, Gedalia, Lee & GP (10)

€ Radical solution to little RS CP problem via bulk realization

of Rattazzi & Zaffaroni’s flavor model.

® New type of GMFV models with large LL and/or RR currents.

¢ Low KK scale + improve naturalness as a bonos =>

exciting LHC phenomenology => linkage between high &
low pT data!
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Summary

€ Data seem to suggest for new source of CPV.

€ Consistent NP interpretation favoring large B; contributions; if

no direct CP (width diff’ => from data) clean theoretically.

@ Can be accounted for by MFV (including Bs>B,).

@ Possible linkage to NP scalar GMFV physics (UV physics fuzzy).

€ Ultra natural warped models => GMFV => can explain the data

via KK gluon exchange, via LLRR operators.

® Low KK scale => soon tested @ LHC+flavor gauge bosons.
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