Radiative Transitions at Belle

I.J. Watson

University of Sydney for the Belle Collaboration

ICHEP, July 23, 2010

Outline

- 1 Radiative Transitions of $\Upsilon(1S)$ to Charmonium-(like) States $\Upsilon(1S) \rightarrow \gamma \chi_{cJ}(\rightarrow \gamma J/\psi)$ $\Upsilon(1S) \rightarrow \gamma X(3872)(\rightarrow \pi \pi \{\pi^0\} J/\psi)$
- 2 X(3872) Production and Radiative Transitions X(3872) in $K(J/\psi\pi\pi)$ $X(3872) \rightarrow J/\psi\gamma$ and $X(3872) \rightarrow \psi'\gamma$
- **3** 1*P* \rightarrow 1*S* radiative transitions of *D* mesons $D_1^0 \rightarrow D^0 \gamma$

Outline

1 Radiative Transitions of $\Upsilon(1S)$ to Charmonium-(like) States $\Upsilon(1S) \rightarrow \gamma \chi_{cJ}(\rightarrow \gamma J/\psi)$ $\Upsilon(1S) \rightarrow \gamma X(3872)(\rightarrow \pi \pi \{\pi^0\} J/\psi)$

2 X(3872) Production and Radiative Transitions X(3872) in $K(J/\psi\pi\pi)$ $X(3872) \rightarrow J/\psi\gamma$ and $X(3872) \rightarrow \psi'\gamma$

3 $1P \rightarrow 1S$ radiative transitions of *D* mesons $D_1^0 \rightarrow D^0 \gamma$

Radiative Transitions

- QED well-understood, QCD strong coupling at low $E \implies$ hard
- Radiative transitions described by QED
- Clean probe of the meson structure
- Heavy quark systems (i.e. b and c quark mesons) test NRQCD
 - · Heavy quarks, non-relativistic bound states

Figure Reference: Gao et al., arxiv:hep-ph/0701009v2

Charmonium (cc)

- Until recently, charmonium thought to be well-understood
- Charmonium spectroscopy revived in wake of exotic XYZ states
- We study $b\bar{b} \rightarrow \gamma c\bar{c}$ transitions in $\Upsilon(1S)$

Figure reference: Voloshin, arxiv:0711.4556

Charmonium-(like) States

- Belle has collected 5.7fb⁻¹ e^+e^- collision data at $\Upsilon(1S)$

 - 102 × 10⁶ ↑(1S) events
- Use $\chi_{cJ} \rightarrow \gamma J/\psi$ ($\mathcal{B} \approx 1.3\%(\chi_{c0})$, 36%(χ_{c1}), 20%(χ_{c2}))
- Find ${f J}/\psi
 ightarrow {f ee}/\mu\mu$ (${\cal B}pprox$ 12%)
- Cuts to suppress Initial State Radiation (ISR) backgrounds

• η_c through $K_S K^+ \pi^-$, $\pi^+ \pi^- K^+ K^-$, $2(K^+ K^-)$, $2(\pi^+ \pi^-)$, $3(\pi^+ \pi^-)$

BRIE

Charmonium-(like) States

Search Topology: $\Upsilon(1S) \rightarrow \gamma \chi_{cJ}(1P)$ and $\rightarrow \gamma \eta_c(1S)$

- Belle has collected 5.7fb⁻¹ e^+e^- collision data at $\Upsilon(1S)$

 - 102 × 10⁶ ↑(1S) events
- Use $\chi_{cJ} \rightarrow \gamma J/\psi$ ($\mathcal{B} \approx 1.3\%(\chi_{c0})$, 36%(χ_{c1}), 20%(χ_{c2}))
- Find ${f J}/\psi
 ightarrow {f ee}/\mu\mu$ (${\cal B}pprox$ 12%)
- Cuts to suppress Initial State Radiation (ISR) backgrounds
- η_c through $K_S K^+ \pi^-, \pi^+ \pi^- K^+ K^-, 2(K^+ K^-), 2(\pi^+ \pi^-), 3(\pi^+ \pi^-)$

 $\Upsilon(1S) \rightarrow \gamma \chi_{cJ} (\rightarrow \gamma J/\psi)$

 $\Upsilon(\mathsf{1S}) \to \gamma R(\to \gamma J/\psi)$

R	N ^{UP} sig	\mathcal{B}^{UP} (10 ⁻⁵)	Theory $\mathcal{B}^*(10^{-5})$
χ_{c0}	11.5	65	0.32
χ_{c1}	13.8	2.3	0.98
χ_{c2}	2.4	0.76	0.56
$\eta_{\mathbf{C}}$	86	6.8	4.9

Upper limits at 90% CL, * Gao et al., arxiv:hep-ph/0701009v2

Fit with fixed shapes, means 1.8 fb⁻¹ of continuum data

No significant signal

(scaled)

Charmonium-(like) States

 $\Upsilon(1S) \rightarrow \gamma X(3872) (\rightarrow \pi \pi \{\pi^0\} J/\psi)$

 $\Upsilon(\mathsf{1S}) \to \gamma X(\mathsf{3872}) (\to \pi \pi \{\pi^0\} J/\psi)$

• Also searched for $Y(4140) \rightarrow \phi(K^+K^-)J/\psi(\ell^+\ell^-)$ no candidates: $\mathcal{B} < 2.4 \times 10^{-6}$

Outline

1 Radiative Transitions of $\Upsilon(1S)$ to Charmonium-(like) States $\Upsilon(1S) \rightarrow \gamma \chi_{cJ} (\rightarrow \gamma J/\psi)$ $\Upsilon(1S) \rightarrow \gamma X(3872) (\rightarrow \pi \pi \{\pi^0\} J/\psi)$

- 2 X(3872) Production and Radiative Transitions X(3872) in $K(J/\psi\pi\pi)$ X(3872) $\rightarrow J/\psi\gamma$ and X(3872) $\rightarrow \psi'\gamma$
- 3 $1P \rightarrow 1S$ radiative transitions of *D* mesons $D_1^0 \rightarrow D^0 \gamma$

X(3872) Production and Radiative Transitions

X(3872) in $K(J/\psi \pi \pi)$

 $B \rightarrow KX(3872) (\rightarrow J/\psi \pi \pi)$

Belle preliminary results, 605 fb⁻¹, arXiv:0809.1224

- What is the X(3872)?
 - (Standard charmonium, diquark–anti-diquark, meson molecule, qq
 q
 q
 q, etc.)
- $\mathcal{B}(B^+ \to K^+ X(3872)) (\to J/\psi\pi\pi)) = (8.10 \pm 0.92 \pm 0.66) \times 10^{-6}$
 - $\mathcal{B}(B^0 \to K^0 X(3872)(\to J/\psi\pi\pi)) = (6.65 \pm 1.63 \pm 0.55) \times 10^{-6}$
- M(X(3872)) consistent in both channels to \approx 1 MeV
 - Rules out certain models expecting a doublet

B

 $X(3872) \rightarrow J/\psi\gamma$ and $X(3872) \rightarrow \psi'\gamma$

Radiative Modes of χ_{cJ} and X(3872)

Preliminary Results, http://belle.kek.jp/results/winter10/X_psigamma/

• Molecular model of X(3872): $X \rightarrow \gamma \psi'$ suppressed w.r.t $X \rightarrow \gamma J/\psi$

• BaBar:
$$\frac{\mathcal{B}(X \to \psi' \gamma)}{\mathcal{B}(X \to J/\psi \gamma)} = 3.5 \pm 1.4$$

- We use 712fb⁻¹ of ↑(4S) data
- First, look at $B \rightarrow K \chi_{cJ}(\gamma J/\psi)$
- First evidence (3.6 σ) for $B^+ \rightarrow K^+ \chi_{c2}(J/\psi\gamma)$

X(3872) Production and Radiative Transitions

 $X(3872) \rightarrow J/\psi\gamma$ and $X(3872) \rightarrow \psi'\gamma$

Radiative Modes of χ_{cJ} and X(3872)

Preliminary Results, http://belle.kek.jp/results/winter10/X_psigamma/

• Molecular model of X(3872): $X \rightarrow \gamma \psi'$ suppressed w.r.t $X \rightarrow \gamma J/\psi$

• BaBar:
$$\frac{\mathcal{B}(X \to \psi' \gamma)}{\mathcal{B}(X \to J/\psi \gamma)} = 3.5 \pm 1.4$$

- We use 712fb⁻¹ of ↑(4S) data
- First, look at $B \rightarrow K \chi_{cJ}(\gamma J/\psi)$
- First evidence (3.6 σ) for $B^+ \rightarrow K^+ \chi_{c2}(J/\psi\gamma)$

 $X(3872) \rightarrow J/\psi\gamma$ and $X(3872) \rightarrow \psi'\gamma$

$${m B}
ightarrow {m K} \; {m X}(3872) (
ightarrow {m J}/\psi \gamma)$$

Belle Preliminary Results, http://belle.kek.jp/results/winter10/X_psigamma/

Now look in the X(3872) signal region of $M(J/\psi\gamma)$

 ${m B}^{\pm}
ightarrow {m K}^{\pm} {m X}(3872) (
ightarrow {m J}/\psi \gamma)$

$$\mathsf{B}^0 o \mathsf{K}^0 X(3872) (o J/\psi\gamma)$$

$$\mathcal{B} = (1.78^{+0.48}_{-0.44} \pm 0.12) imes 10^{-6}$$

$${\cal B} < 6.6 imes 10^{-6} \ (90\% CL)$$

 $X(3872) \rightarrow J/\psi\gamma$ and $X(3872) \rightarrow \psi'\gamma$

$$B \rightarrow K X(3872) (\rightarrow \gamma \psi')$$

Belle Preliminary Results, http://belle.kek.jp/results/winter10/X_psigamma/

X(3872) Signal, $\psi' K$, $\psi' K^*$ background, Combinatorial

Outline

1 Radiative Transitions of $\Upsilon(1S)$ to Charmonium-(like) States $\Upsilon(1S) \rightarrow \gamma \chi_{cJ} (\rightarrow \gamma J/\psi)$ $\Upsilon(1S) \rightarrow \gamma X(3872) (\rightarrow \pi \pi \{\pi^0\} J/\psi)$

2 X(3872) Production and Radiative Transitions X(3872) in $K(J/\psi\pi\pi)$ $X(3872) \rightarrow J/\psi\gamma$ and $X(3872) \rightarrow \psi'\gamma$

3 1*P* \rightarrow 1*S* radiative transitions of *D* mesons $D_1^0 \rightarrow D^0 \gamma$

D** meson radiative transitions

$1P \rightarrow 1S$ radiative transitions of D mesons

- Expected that *D* and *D_s* meson systems should have \approx properties i.e. broad j = 1/2 doublet $(D_0^{*0}/D_1^{\prime 0})$ and narrow j = 3/2 doublet (D_2^{*0}/D_1^0)
- Found unexpected narrow D_s states below thresholds
- Use D** (L = 1 D mesons) as a complementary test of theory
- Use the radiative transitions of D^{**} as a probe of the wavefunction

 D^{**} meson radiative transitions $D_1^0 \rightarrow D^0 \gamma$

Search Strategy for $D_1^0 \rightarrow D^0 \gamma$

 $D_1^0
ightarrow D^0 \gamma$ golden mode

Large ${\cal B},\, D^0_1 o D^0 \pi^0$ forbidden

- Use standard $\Upsilon(4S) \rightarrow B\bar{B}$ variables $\Delta E = E_{\rm B} - E_{\rm beam}$ and $M_{\rm bc} = \sqrt{E_{\rm beam}^2 - p_B^2}$
- π^0 veto using decay angle $\cos \theta_{\gamma}$
- Bin in helicity angle of the D⁰ w.r.t. D₁⁰

- Reconstruct through $D^0 \to K\pi$
- $\cos \theta_{\text{thrust}}$ cuts for continuum $(q\bar{q})$ suppression
- Fit resonance peak in $M(\gamma D^0)$

 D^{**} meson radiative transitions $D_1^0 \rightarrow D^0 \gamma$

Disentangling γD^0 from $\pi^0 D^0$ Feed-down

Belle Preliminary Results

Most dangerous background is $D^{**} \rightarrow \pi^0 D^0$

- (Left) Angular distributions of signal and feed-down (D_2^{*0}/D_0^{*0})
- Non-trivial shapes due to $D_{0/2}^{*0}$ interference (changes across helicity bins)
- Has component which peaks near signal resonance (right)
- Reconstruct and fit to $B^- o \pi^- D^{**} (o \pi^0 D^0)$ in helicity bins
- Fix feed-down background in $M(\gamma D^0)$ distribution

BRIF

D** meson radiative transitions D

$D_1^0 \rightarrow D^0 \gamma$

$D_1^0 ightarrow D^0 \gamma$ Final Fit in Helicity Bins

Belle Preliminary Results

Cross-feed (fixed), signal

- 605 fb⁻¹ ↑(4S) data
- Simultaneous fit to helicity bins
 - Signal yield, σ , μ floated
- Excess in backward bin (top-left)
 - Feed-down requires further study (see backup)
- Clear signal peak
- (Plan to look in $D^0
 ightarrow K3\pi$ also)

D** meson radiative transitions

$D_1^0 \rightarrow D^0 \gamma$

$D^0_1 ightarrow D^0 \gamma, \, D^0 ightarrow {\cal K} \pi$, Sum over Helicity Bins

Belle Preliminary Results

 $\mathcal{B}(B^- \to D_1^0 \pi^-) \times \mathcal{B}(D_1^0 \to D^0 \gamma) = (5.0 \pm 0.5(\textit{stat.}) \pm 1.5(\textit{sys.})) \times 10^{-5}$

Corresponds to (using $\mathcal{B}(B^- \to \pi^- D_1^0) = 1.02 \cdot 10^{-3}$ and $\Gamma(D_1^0) = 20.4$ MeV) Our measurement c.f. theory*: $\mathcal{B}(D_1^0 \to \gamma D^0) = .050$ $\mathcal{B}(D_1^0 \to \gamma D^0) = .028$

B

Conclusion

- Set limits for Υ(1S) → γ Charmonium(-like) states (approaching theory predictions)
 - $\Upsilon(1S) \rightarrow \gamma \chi_{cJ}$
 - $\Upsilon(1S) \rightarrow \gamma \eta_c$
 - $\Upsilon(1S) \rightarrow \gamma X(3872)$
- Searched for X(3872) Radiative Transitions
 - First observation of ${\cal B}^+ o {\cal K}^+ \chi_{c2} (o \gamma J/\psi)$
 - Confirm observation of X(3872) $ightarrow \gamma J/\psi$
 - No X(3872) $ightarrow \gamma \psi'$ signal found
- First measurement of a $1P \rightarrow 1SD$ meson radiative transition
 - First observation of $D_1^0 \rightarrow D^0 \gamma$
 - More work required on feed-down from $B^- o \pi^- \pi^0 D^0$

Backup

Backup material

 $B \rightarrow KX(3872) (\rightarrow J/\psi \pi \pi)$

- Certain diquark/anti-diquark models have the X as one state in a doublet with mass difference δm
- Then, X from neutral B and charged B different states
- $\delta m = (7 \pm 2)/\cos\theta$ MeV. θ (mixing angle) $\approx 20^{\circ}$ (7.44 MeV)
- Cf $B^- \rightarrow K^- X(3872)(\rightarrow J/\psi\pi\pi)$ (Belle's discovery mode) and $B^0 \rightarrow K^0 X(3872)(\rightarrow J/\psi\pi\pi)$

 $B \rightarrow KX(3872)(\rightarrow J/\psi\pi\pi)$

- First statistically significant observation of $B^0 \rightarrow$ $K_{\rm S}X(3872)$
- Mass difference between charged and neutral decays consistent with zero

$B ightarrow K^*X(3872)$

$$\mathcal{B}(B^0 \to (K\pi)_{NR}X(3872)) \times \mathcal{B}(X(3872) \to J/\psi\pi\pi) = (8 \pm 2.0^{+1.1}_{-1.4}) \times 10^{-6}$$

- $\mathcal{B}(B^0 \to K^*(892)^0 X(3872)) \times \mathcal{B}(X(3872) \to J/\psi \pi \pi) < 3.4 \times 10^{-6}$
- Non-resonant (*K*π) unusual for charmonium
- ψ' shows the typical behaviour (K^* dominance also in $B \rightarrow J/\psi K\pi$ and $\chi_{c1}K\pi$)

$B \rightarrow KX(3872)(\rightarrow \gamma \psi')$: Main Analysis Features

Belle Analysis QWG '10 Talk by Vishal Bhardwaj

- $\psi' \rightarrow \text{ee or } \mu\mu \text{ or } J/\psi\pi\pi$
- *E*_γ > 100 MeV
- X(3872) from ψ' γ, B from K⁺X(3872) or K_SX(3872)
- ΔE and M_{bc} signal selection
- B → ψ'K^{*} veto. Look for additional π^{0/+} to form K^{*}.

Reject event if

- $|\Delta E^{\psi'K^*}| < 20 \text{ MeV}$ • $M_{K\pi} \in (892 \pm 75) \text{ MeV}$ • $M_{bc}^{\psi'K^*} > 5.27 \text{ GeV}$
- Parameterize background functions from MC (using M_{bc} data sidebands to confirm understanding):
 - $B^0 \rightarrow \psi' K^{*0}$
 - $B^+ \rightarrow \psi' K^+$
 - $B^+ \rightarrow \psi' K^{*+}$
 - $B^0 \rightarrow \psi' K_S$
 - Combinatorial (with/without $\psi'/J/\psi$)
- Given BaBar \mathcal{B} , expect 24.1 \pm 6.8 events in $B^+ \rightarrow K^+ X(3872)$ channel, find 5.0^{+11.9}_{-11.0}

Independent analysis (different selection/fitter) also performed on data sample, consistent result

BaBar Analysis PRL 102, 132001 (2009)

- $\psi' \rightarrow \text{ee or } \mu\mu \text{ or } J/\psi\pi\pi$
- E_γ > 100 MeV
- Form X(3872) from $\gamma \psi'$, B from KX(3872)
- Vertex constrain *B* daughters, cut on vertex prob., reconstructed M_B , $M_{miss} = \sqrt{(\rho_{e^+e^-} - \rho_B)^2/c^2} (p_B$ is *B* momenta when decay products constrained to *B* mass)
- Fit to M_{miss}, form sPlot of M_X
 - Crystal Ball function for signal
 - Non-peaking background with ARGUS function
 - Peaking background with shared Crystal Ball parameterisation from signal
- Fit to sPlot to obtain signal
 - Double gaussian for signal
 - Linear background function

 $D^{**0} \rightarrow D^0 \pi^0$ in Data

Belle Preliminary Results

- Fit based on $|A|^2$ with resonance terms
- Terms for D_2^{*0} and D_0^{*0} in amplitude
- *ρ* interference not taken into account (so far)
- · Parameters of low bin decoupled from upper bins

