Measurement of jet production in proton-proton collisions at 7 TeV centre-of-mass energy with the Atlas detector

Tancredi Carli (CERN) On behalf of the Atlas collaboration

All results are documented in: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ ATLAS-CONF-2010-050

and performance studies in:

https://twiki.cern.ch/twiki/bin/view/Atlas/JetEtMissPublicCollisionResults ATLAS-CONF-2010-052 ATLAS-CONF-2010-053

ATLAS-CONF-2010-055 ATLAS-CONF-2010-055 ATLAS-CONF-2010-055 ATLAS-CONF-2010-056

Historical Remark

First convincing evidence for jet production has been presented at ICHEP in Paris 1982

 \sqrt{s} =7000 GeV

Atlas 2010

P_{T,jet}~60 GeV M_{1.2}=140 GeV

P_{T,jet}~800 GeV M_{1,2}=2000 GeV

Definition of Observables

Data set:

March/April 2010 proton-proton collisions at 7 TeV with integrated luminosity about 17 nb⁻¹

Jet inputs:

Dynamically formed 3-d connected areas of energy depositions optimised for noise suppression and following the hadronic shower development (massless)

Anti-kt jet algorithm:

Infrared- and collinear jet algorithm clustering around hard objects producing geometrical well defined cone-like jets (experimentally friendly)

Resolution parameter is set to: R=0.4 or R=0.6

Jet selection:

Transverse momentum: $P_{T,jet} > 60 \text{ GeV}$ Rapidity: |y| < 2.8Observables: Inclusive jet cross-section: $d\sigma/d|y|dP_{T,jet}$ Di-jet cross-section: $d\sigma/dM_{1,2} d|y_{max}|^{T,jet}$ $M_{1,2}$ is invariant mass of first two leading jets with $P_{T,1} > 60 \text{ GeV}$ and $P_{T,2} > 30 \text{ GeV}$ $|y|_{max} = max(|y|_1,|y|_2)$ with y_1 and y_2 rapidity of two leading jets $d\sigma/d\chi dM_{1,2}$ with $\chi = \exp(|y1-y2|) \sim (1+\cos\theta^*)/(1-\cos\theta^*)$ Restricted to $y^* = 0.5 |y_1-y_2| < 0.5 \log(30)$ and $y_{boost} = 0.5 |y_1+y_2| < 1.1$

Jet Calibration and Uncertainty

Jet calibration:

Simple $P_{T,jet}$ and y dependent correction applied to measured jets at the electro-magnetic scale. Using particle level (truth) from Monte Carlo simulation as reference.

Jet energy scale uncertainty:

Evaluated using MC using various detector configurations, hadronic shower and physics models Based on large test-beam experience. Example:

In-situ measurements:

- 1) Using Di-jet balance to transport uncertainty central -> forward
- 2) Additional uncertainty for pile-up from avera(tower energy per verte

 3) Cross-checked with single isolated hadron response measureme (E_{calo}/p_{track}) Uncertainty via: deconvolution of jets in individual particles

Jet energy scale uncertainty smaller than 7% for p_{tiet} >100 GeV

Perturbative Predictions: NLO QCD Theory Calculation

NLO pQCD calculated with NLOJET++, efficient uncertainty calculation using: APPLGRID default PDF: CTEQ6.6 variations: HERAPDF, MSTW2008, NeuralNet-PDF Leading jet Pt as renormalisation and factorisation scale, independently varied by factor of 2

Measured Single Inclusive Jet Cross-section for R=0.6

 $P_{T,jet}$ reach up to 600 GeV Similar $P_{T,jet}$ reach as latest Tevatron measurements

Data and theory are consistent

Uncertainty in data larger than in theory Dominated by jet energy scale

Measured Single Inclusive Jet Cross-section for R=0.6 in Rapidity Regions

Data and theory are consistent in all rapidity regions

Data/Theory Inclusive Jet Cross-section for R=0.6 in Rapidity Regions

Data/Theory Single Inclusive Jet Cross-section for R=0.4 Rapidity Regions

Di-jet Cross-section for R=0.6 as Function of Di-Jet Mass in Rapidity Bins

 $\rm M_{_{1,2}}$ is invariant mass of first two leading jets with $\rm P_{_{T,1}}{>}\,60~GeV$ and $\rm P_{_{T,2}}{>}30~GeV$

 $|y|_{max} = \max(|y|_1, |y|_2)$, where y_1 and y_2 rapidity of two leading jets $= 10^{18}$ [pb/GeV 10¹⁷ ATLAS Preliminary ____ 2.1 < |y|_{max} < 2.8 (× 1e8) anti-k₁ jets, R=0.6 10¹⁵ _ *L* dt=17 nb⁻¹, √s=7 TeV d²σ/dm₁₂d|y|_{max} ιr 10,01 10,01 Total syst. unc. - 0.8 < $|y|_{max}$ < 1.2 (× 1e4) NLO pQCD + non-pert. **10⁵** 10³ 10 10 10^{3} 2×10² 2×10^{3} m₁₂ [GeV]

Di-jet masses up to ~ 2 TeV !

Overtaking Tevatron analysis in mass reach.

Data and theory consistent in all rapidity regions

Di-jet Cross-section for R=0.6 vs Jet Opening Angles in Mass Bins

dσ/dχ dM_{1,2} with χ = exp(|y1-y2|) ~ (1+cos θ^{*})/(1-cos θ^{*}), where θ^{*} angle in cm system Restricted to 0.5 |y₁-y₂|<0.5 log(30) y_{hoost} = 0.5 |y₁+y₂|<1.1

Most recent Data-Set

About 20 times more data are already on tape: Comparison on detector level with standard ATLAS MC using Pythia

Jets with transverse momenta beyond 1 TeV and dijet masses to about 2.5 TeV are observed. Higher ${\rm p}_{\rm t,jet}$ than observed at Tevatron.

Di-jet mass larger than Tevatron cms energy !

It starts to get interesting !

Highest transverse Momentum Event

Highest pT jet has a pT = 1.12 TeV.

Conclusions

The first LHC data already open a window to short distance physics at the TeV scale Atlas has observed first events beyond $P_{T,iet} \sim 1 \text{ TeV}$ and beyond $M_{1,2} \sim 2.5 \text{ TeV}$

Based on systematic Monte Calo simulations, test-beam experience and in-situ response measurements of single isolated hadrons, Atlas has established a jet calibration and determined a conservative uncertainty: smaller than 7% for $p_{t,jet}$ > 100 GeV and |y|<2.8 Excellent calorimeter understanding after first few months of data taking.

Based on the first data Atlas has measured the single inclusive jet cross-section for $60 < P_{T,jet} < 600$ GeV and |y| < 2.8 using the anti-kt jet clustering algorithm with R=0.4 and R=0.6

Di-jet cross-sections have been measured as a function of the di-jet mass and the scattering angle

The data are consistent with a NLO QCD theory calculation Theory uncertainty about 10% (PDF and scale) Data uncertainty about 30-40% (driven by jet energy scale)

Future plans: use of larger data set already on tape (~300 nb⁻¹) to make precise measurement in previously unexplored P_{T,jet} and M_{1,2} range
 Good calorimeter understanding and large data set will allow to reduce jet energy scale uncertainty

Back-up

References

Anti-kt jet algorithm: Cacciari, Salam, Soyez, JHEP 0804 (2008) 063
NLOJET++: Nagy, PR D68 (2003) 094002
APPLGRID: Carli, Salam, Staravoitov, Sutton et al., Eur. Phys. J C66 (2010) 503
CTEQ6: Nadolsky, Phys.Rev.D78:013004,2008
Rivet A. Buckley et al., arXiv:1003.0694

Internal Jet Structure

Single isolated hadron calorimeter response

Measure calorimeter response around isolated tracks vs pt and eta Repeat analysis of 900 GeV data (ATLAS-CONF-2010-017) on 7 TeV data

Example:

Increased neutral back-ground with increased CM energy Data compatible after background subtraction Response of single isolated hadrons within 3% of simulated response

Jet Calibration and Uncertainty in Central and Forward Region

Comparison of JES uncertainty from single isolated hadron analysis and MC study

In-situ measurement of isolated hadron calorimeter response will allow to reduce the uncertainty of the jet calorimeter response uncertainty

Jet calibration:

Simple P_{T,jet} and y dependent correction applied to measured jets at the electro-magnetic scale. Using particle level (truth) from Monte Carlo simulation as reference.

Factor:

Robust calibration method while commissioning of more sophisticated calibration schemes on-going

Flavour dependence for EM+JES calibration

Flavour dependence can be reduced using more sophisticated calibration schemes

Rapidity Inter-calibration using Di-jet Balance

 $d\sigma/d\chi \, dM_{_{1,2}} \quad \text{with } \chi = \exp(|y1-y2|) \sim (1+\cos \theta^*)/(1-\cos \theta^*)$ Restricted to $y^* = 0.5 |y_1-y_2| < 0.5 \log(30) y_{_{boost}} = 0.5 |y_1+y_2| < 1.1$

Inclusive Jet Cross-section R=0.4: Monte Carlo Generators

32

Di-jet Cross-section R=0.4: Monte Carlo Generators

Di-jet Cross-section R=0.6: Monte Carlo Generators

Inclusive Jet Cross-section R=0.6: Monte Carlo Generators

