

Hadron spectroscopy at COMPASS: First results on diffractive dissociation

Frank Nerling Universität Freiburg, Physikalisches Institut

> on behalf of the COMPASS Collaboration

35th Internationl conference on High Energy Physics, Paris, France, 22-28 July 2010

Outline:

Introduction

- The COMPASS experiment
- PWA method
- First results on diffractive production (2008 data)
 - ▶ neutral channel: 3π final states neutral vs. charged mode → First PWA fits - main wave
 - > kaonic channels: Kaon diffraction & first glimpse on $(K\overline{K}\pi)^{-}$
 - \rightarrow Further ongoing analyses
- Conclusions & outlook

bmb+f - Förderschwerpunkt

COMPASS

Großgeräte der physikalischen Grundlagenforschung

Frank Nerling

Frank Nerling

Hadron spectroscopy at COMPASS

23/07/2010

Different production mechanisms

a) Diffractive production

b) Central production

c) Photo production (Primakoff reactions)

Different production mechanisms

a) Diffractive production

c) Photo production (Primakoff reactions)

b) Central production

Focus on first results from diffractive dissociation

Mesons and Spin Exotic States

Constituent quark model

- color neutral $q\overline{q}$ systems
- Quantum numbers $I^{G} J^{PC}$
- $P = (-1)^{L+1}$ $C = (-1)^{L+S}$ $G = (-1)^{l+L+1}$
- J^{PC} multiplets: 0⁺⁺, 0⁻⁺, 1⁻⁻, 1⁺⁻, 1⁺⁺, 2⁺⁺, ...
- Forbidden: 0⁻⁻, 0⁺⁻, 1⁻⁺, 2⁺⁻, 3⁻⁺, ...

Hybrid candidates (1.3 - 2.2 GeV/c²): lightest hybrid predicted: exotic $J^{PC} = 1^{-+}$ • π₁(1400): VES, E852, Crystal Barrel -> ηπ • π₁(1600): E852, VES -> ρπ, η'π, f₁π, b₁π • π₁(2000): E852 -> f₁(1285) π, b₁(1235) π still controversal -> COMPASS

QCD: meson states beyond

Diffractive scattering

- study of J^{PC} exotic mesons
- t-channel Reggeon exchange
- forwards kinematics, target stays intact

Mesons and Spin Exotic States

Constituent quark model

- color neutral $q\overline{q}$ systems
- Quantum numbers $I^{G} J^{PC}$
- $P = (-1)^{L+1}$ $C = (-1)^{L+S}$ $G = (-1)^{l+L+1}$
- J^{PC} multiplets: 0⁺⁺, 0⁻⁺, 1⁻⁻, 1⁺⁻, 1⁺⁺, 2⁺⁺, ...
- Forbidden: 0⁻⁻, 0⁺⁻, 1⁻⁺, 2⁺⁻, 3⁻⁺, ...

Hybrid candidates (1.3 - 2.2 GeV/c²):

lightest hybrid predicted: exotic J^{PC} =1⁻⁺

- $\pi_1(1400)$: VES, E852, Crystal Barrel -> $\eta\pi$
- $\pi_1(1600)$: E852, VES -> $\rho\pi$, $\eta'\pi$, $f_1\pi$, $b_1\pi$
- $\pi_1(2000)$: E852 -> $f_1(1285) \pi$, $b_1(1235) \pi$
- still controversal \rightarrow COMPASS

QCD: meson states beyond

Glueballs: gg, ggg
Hybrids: qq

qq
<ul

Diffractive scattering

- study of J^{PC} exotic mesons
- t-channel Reggeon exchange
- forward kinematics, target stays intact

Mesons and Spin Exotic States

Constituent quark model

- color neutral $q\overline{q}$ systems
- Quantum numbers $I^{G} J^{PC}$
- $P = (-1)^{L+1}$ $C = (-1)^{L+S}$ $G = (-1)^{l+L+1}$
- J^{PC} multiplets: 0⁺⁺, 0⁻⁺, 1⁻⁻, 1⁺⁻, 1⁺⁺, 2⁺⁺, ...
- Forbidden: 0⁻⁻, 0⁺⁻, 1⁻⁺, 2⁺⁻, 3⁻⁺, ...

Hybrid candidates (1.3 - 2.2 GeV/c²):

lightest hybrid predicted: exotic J^{PC} =1⁻⁺

- $\pi_1(1400)$: VES, E852, Crystal Barrel -> $\eta\pi$
- $\pi_1(1600)$: E852, VES -> $\rho\pi$, $\eta'\pi$, $f_1\pi$, $b_1\pi$
- $\pi_1(2000)$: E852 -> $f_1(1285) \pi$, $b_1(1235) \pi$
- still controversal \rightarrow COMPASS

Diffractive pion dissociation

- incoming π^- excited to resonance X^-
- X⁻ decays into final state, e.g. $(3\pi)^{-}$:
 - $\pi^- p \longrightarrow \pi^- \pi^+ \pi^- p$ (charged mode)
- small momentum transfer

QCD: meson states beyond:

Glueballs: gg, ggg
Hybrids: qq

qq
<ul

Diffractive scattering

- study of J^{PC} exotic mesons
- t-channel Reggeon exchange
- forwards kinematics, target stays intact

23/07/2010

PWA using isobar model

Partial wave analysis:

- program: Illinois/Protvino/Munich (D.Ryabchikov) software (IHEP/VES, TUM/COMPASS)
- Isobars: $(\pi\pi)_{S}$ [broad $f_{0}(600)+f_{0}(1370)$], $f_{0}(980)$, $\rho(770)$, $f_{2}(1270)$, $\rho_{3}(1690)$
- Acceptance: corrections included (2004: ~60%, rather flat)

Step 1) Mass independent PWA: (40MeV/c² bins, 41+1 partial waves)

$$\sigma_{indep}(\tau, m, t') = \sum_{\epsilon = \pm 1} \sum_{r=1}^{N_r} \left| \sum_i T_{ir}^{\epsilon} f_i^{\epsilon}(t') \psi_i^{\epsilon}(\tau, m) / \sqrt{\int \left| \psi_i^{\epsilon}(\tau', m) \right|^2 d\tau'} \right|^2$$

- Production amplitudes $\mathcal{T}^{\epsilon}_{ir}
 ightarrow$ extended maximum likelihood fit
- Decay amplitudes $\psi_i^{\epsilon}(\tau, \vec{m})$ (Zemach tensors, D functions)

PWA using isobar model

Partial wave analysis:

- program: Illinois/Protvino/Munich (D.Ryabchikov) software (IHEP/VES, TUM/COMPASS)
- Isobars: $(\pi\pi)_{S}$ [broad $f_{0}(600)+f_{0}(1370)$], $f_{0}(980)$, $\rho(770)$, $f_{2}(1270)$, $\rho_{3}(1690)$
- Acceptance: corrections included (2004: ~60%, rather flat)

Step 1) Mass independent PWA: (40MeV/c² bins, 41+1 partial waves)

Step 2) Mass dependent χ^2 **fit:** (to mass independent result)

- 6 main partial waves chosen, parameterised by Breit-Wigner
- Coherent background for some waves

Frank Nerling

Hadron spectroscopy at COMPASS

Diffractive dissociation into 3π final states (2008 data, LH₂ target)

Mass of outgoing 3π system – neutral mode: $\pi^- \mathbf{p} \longrightarrow \pi^- \pi^0 \pi^0 \mathbf{p}$

Mass of outgoing 3π system – charged mode: $\pi^- p \longrightarrow \pi^- \pi^+ \pi^- p$

First comparison: Neutral vs. charged mode

simple isospin symmetry check

 $a_2(1320)$ used as a standard candle for normalisation

Isospin symmetry: neutral / charged mode

• isobar decaying into $f_2 \pi$: 1/2 intensity expected

• isobar decaying into $\rho \pi$: 1/1 intensity expected

Isospin symmetry: neutral / charged mode

• isobar decaying into $f_2 \pi$: 1/2 intensity expected

• isobar decaying into $\rho \pi$: 1/1 intensity expected

First comparison: Neutral vs. charged mode

simple isospin symmetry check

Frank Nerling

Hadron spectroscopy at COMPASS

Studies of final states with (hidden) strangeness -- Kaonic channels

[NIM-A587:371-387, 2008], [NIM-A616:21-37, 2010]

Motivation:

- Search for J^{PC} spin exotic mesons decaying via $K\overline{K}\pi$
- Study glueball candidates predicted to decay into $K\overline{K}$
- New insights on kaonic spectrum in general

Kaonic channels II: $(K\overline{K}\pi)^ \pi^- p \rightarrow \pi^- K_s K_s p$ vs. $\pi^- p \rightarrow \pi^- K^+ K^- p$

Main issues of selection:

- Beam kaon anti-tagged by CEDARs
- Final state kaon identified by V0 vertex ($K_s K_s$) or by RICH (K+K⁻)

• Combinatorics in $K_s \pi^-$ case

Resonances: K*(892), K₂*(1430), K₃*(1780), also probably K₄*(2045)

Kaonic channels II: $(K\overline{K}\pi)^ \pi^- p \rightarrow \pi^- K_s K_s p$ vs. $\pi^- p \rightarrow \pi^- K^+ K^- p$

Main issues of selection:

- Beam kaon anti-tagged by CEDARs
- Final state kaon identified by V0 vertex ($K_s K_s$) or by RICH (K+K⁻)

Summary & conclusions

COMPASS: high potential for Hadron Spectroscopy

- ✓ 2004 data: Observed exotic J^{PC} → π_1 (1600) [PRL 104 (2010) 241803]
- ✓ 2008/09: Data taken with hadron beams on proton & nuclear targets
- ✓ Very high statistics (10-100x world statistics)

COMPASS measures Neutral & Charged channels

- \checkmark First results on 3π final state 2008 data (diffr. dissociation)
 - → First comparision neutral vs. charged mode (PWA: isospin symmetry)
 - => independent confirmation of new states within same experiment
- => Ongoing: Ecal calibration (for full usage of hardware upgrades)
- COMPASS measures kaonic final states (diffr. dissociation)
 - ✓ Kaon diffraction: First look into $K^-\pi^+\pi^-$ promising (2008 only: 3x WA32))
 - \checkmark (KK π)⁻: First comparison K_sK_s π^- **vs.** K⁻K⁺ π^- (PWA underway)

Further:

 $(KK\pi)^0$: in $K_s K^{+/-} \pi^{-/+} \pi^-$ final states (PWA started, higher masses (> 2.2 GeV)

 \rightarrow PWA of $f_1(1285)\pi$ & $f_1(1420)\pi$ (\rightarrow never done before)

=> more results soon

Conclusions & outlook

Further

- Central production (charged & neutral, pionic & kaonic),
- Baryon spectroscopy (charged & neutral, pionic & kaonic),
- Primakoff & low t' => transition region of production mechanisms
- different targets also
 - \rightarrow detailed study of different production mechanisms

Backup

Further neutral channels (PWA ongoing): $\pi^- p \rightarrow \pi^- \eta p \quad \& \pi^- p \rightarrow \pi^- \eta \eta p$

Fitted resonances (2004 data)

Resonance	Mass	Width	Intensity	Channel
	(MeV/c^2)	(MeV/c^2)	(%)	$J^{PC}M^{\epsilon}[isobar]L$
$a_1(1260)$	$1255 \pm 6^{+7}_{-17}$	$367 \pm 9^{+28}_{-25}$	$67 \pm 3^{+4}_{-20}$	$1^{++}0^+ \rho \pi S$
$a_2(1320)$	$1321 \pm 1^{+0}_{-7}$	$110 \pm 2^{+2}_{-15}$	$19.2 \pm 0.6^{+0.3}_{-2.2}$	$2^{++}1^+ \rho \pi D$
$\pi_1(1600)$	$1660 \pm 10^{+0}_{-64}$	$269 \pm 21^{+42}_{-64}$	$1.7 \pm 0.2^{+0.9}_{-0.1}$	$1^{-+}1^+ \rho \pi P$
$\pi_2(1670)$	$1658 \pm 3^{+24}_{-8}$	$271 \pm 9^{+22}_{-24}$	$10.0 \pm 0.4^{+0.7}_{-0.7}$	$2^{-+}0^+ f_2 \pi S$
$\pi(1800)$	$1785 \pm 9^{+12}_{-6}$	$208 \pm 22^{+21}_{-37}$	$0.8 \pm 0.1^{+0.3}_{-0.1}$	$0^{-+}0^{+} f_0 \pi S$
$a_4(2040)$	$1885 \pm 13^{+50}_{-2}$	$294 \pm 25^{+46}_{-19}$	$1.0 \pm 0.3^{+0.1}_{-0.1}$	$4^{++}1^{+} \rho \pi G$

All & Preselected gg pairs, circular cut on PDG π^0 mass

 $2\pi^0$ evt := exactly 4 clusters, exactly one $2\pi^0$ combi within PDG +- 20 MeV

All & Preselected gg pairs, circular cut on PDG π^0 mass

After final cuts on $\Delta \Phi$ and exclusivity,

 $2\pi^0$ evt := exactly 4 clusters, exactly one $2\pi^0$ combi within PDG +- 20 MeV

$\Delta \Phi$ (RPD-Spectro) vs. E_{beam}

$\Delta \Phi$ (RPD-Spectro) vs. E_{beam}

Mass spectrum of both $\pi^-\pi^0$ systems & Dalitz plot, a₂ region

Dalitz plots: π_2 region

Decay angles in G.J. frame: Full PhaseSpace Generated Prediction vs. fitted data

Frank Nerling

Waveset used for the PWA

	$J^{PC}M^{\epsilon}$	L	Isobar π	Treshold (GeV/c^2)				
-	$0^{-+}0^{+}$	S	$f_0(980)\pi$	1.25				
	$0^{-+}0^{+}$	S	$(\pi\pi)_s\pi$	-				
	$0^{-+}0^{+}$	P	$ ho\pi$	-				
-	$1^{-+}1^{+}$	P	$\rho\pi$	-				
-	$1^{++}0^{+}$	S	$\rho\pi$	-				
	$1^{++}0^{+}$	P	$f_2\pi$	1.20	2++1+	P	$f_2\pi$	1.20
	$1^{++}0^{+}$	P	$(\pi\pi)_s\pi$	0.94	 $2^{++}1^{+}$	D	$\rho\pi$	-
	$1^{++}0^{+}$	D	$\rho\pi$	1.30	3++0+	S	$ ho_3\pi$	1.76
	$1^{++}1^{+}$	S	$\rho\pi$	-	$3^{++}0^{+}$	P	$f_2\pi$	1.20
	$1^{++}1^{+}$	P	$f_2\pi$	1.40	$3^{++}1^{+}$	$\begin{bmatrix} D\\S \end{bmatrix}$	ρ_{π}	$1.20 \\ 1.76$
	$1^{++}1^{+}$	P	$(\pi\pi)_s\pi$	1.20	$3^{++}1^{+}$	P	$f_2\pi$	1.20
	$1^{++}1^{+}$	D	$\rho\pi$	1.40	3++1+	D	$ ho\pi$	1.50
	$2^{-+}0^{+}$	S	$f_2\pi$	1.20	$4^{-+}0^{+}$	F	$\rho\pi$	1.00
	$2^{-+}0^{+}$	P	$\rho\pi$	0.80	$\frac{4}{4^{++}1^{+}}$	F F	$\frac{\rho \pi}{f_0 \pi}$	1.20
	$2^{-+}0^{+}$	D	$(\pi\pi)_{s}\pi$	0.80	 $4^{++}1^{+}$	G	$\rho\pi$	1.40
	$2^{-+}0^{+}$	D	$f_2\pi$	1.50	1-+0-	P	$\rho\pi$	-
	$2^{-+}0^{+}$	F	$\rho\pi$	1.20	1-+1-	P	$ ho\pi$	-
	$2^{-+}1^{+}$	S	$f_{2}\pi$	1.20	$1^{++}1^{-}$	S	$\rho\pi$	-
	$2^{-+}1^{+}$	P	$\rho\pi$	0.80	2^{+1} $2^{++}0^{-}$	$\frac{S}{P}$	$f_2\pi$	$1.20 \\ 1.30$
	2^{-+1^+}	\overline{D}	$(\pi\pi)_{\circ}\pi$	1.20	$2^{++}0^{-}$	D	$\rho\pi$	-
	2^{-+1+}	D	$f_0\pi$	1.50	2++1-	P	$f_2\pi$	1.30
	2^{-+1^+}	F	$\rho\pi$	1.20	FLAT			

Table 5: List of the 42 waves used for the mass independent PWA