Reserve

CLIC Main Parameters

CLIC 500 G

http://cdsweb.cern.ch/record/1132079?ln=fr http://clic-meeting.web.cern.ch/clic-meeting/clictable2007.html

CLIC 3 TeV

2.75

48.3

6.8%

415

Beam parameters	Conservative	Nominal	Conservative	Nominal
Accelerating structure	502		G	
Total (Peak 1%) luminosity	0.9(0.6)·10 ³⁴	2.3(1.4)·10 ³⁴	1.5(0.73)·10 ³⁴	5.9(2.0)·10 ³⁴
Repetition rate (Hz)			50	
Loaded accel. gradient MV/m		80		100
Main linac RF frequency GHz	12			
Bunch charge10 ⁹	6.8		3.72	
Bunch separation (ns)	0.5			
Beam pulse duration (ns)	177 156		156	
Beam power/beam (MWatts)	4.9		14	
Hor./vert. norm. emitt (10 ⁻⁶ /10 ⁻⁹)	3/40	2.4/25	2.4/20	0.66/20
Hor/Vert FF focusing (mm)	10/0.4	8 / 0.1	8 / 0.3	4 / 0.07

1.87

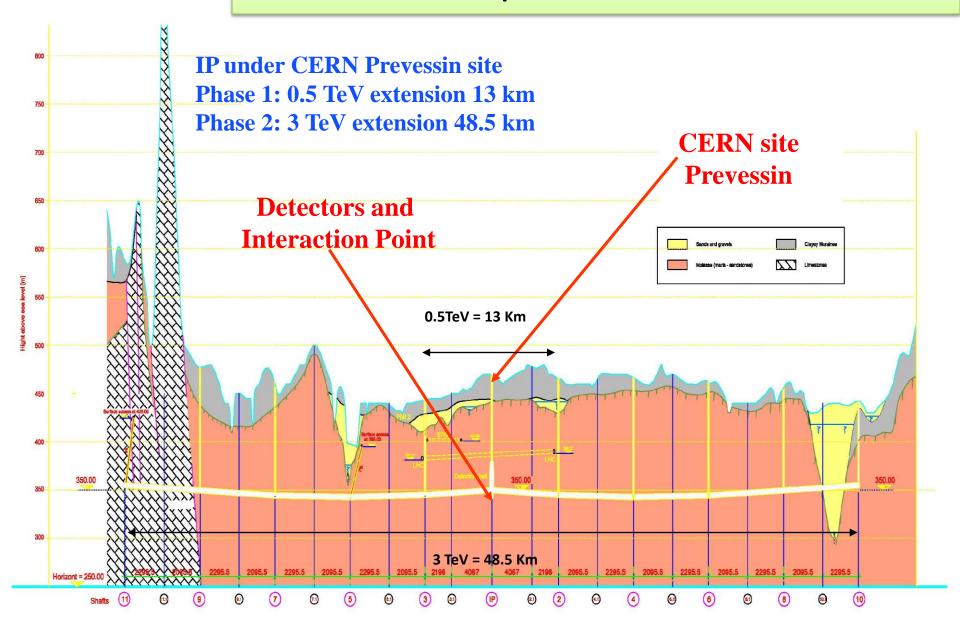
13.0

7.5%

129.4

Accelerating structure		502		G
Total (Peak 1%) luminosity	0.9(0.6)·10 ³⁴	2.3(1.4)·10 ³⁴	1.5(0.73)·10 ³⁴	5.9(2.0)·10
Repetition rate (Hz)			50	
Loaded accel. gradient MV/m		80		100
Main linac RF frequency GHz			12	
Bunch charge10 ⁹		6.8		3.72
Bunch separation (ns)			0.5	
Beam pulse duration (ns)	177 156		156	
Beam power/beam (MWatts)		4.9		14
Hor./vert. norm. emitt (10 ⁻⁶ /10 ⁻⁹)	3/40	2.4/25	2.4/20	0.66/20
Hor/Vert FF focusing (mm)	10/0.4	8 / 0.1	8 / 0.3	4 / 0.07
Hor./vert. IP beam size (nm)	248 / 5.7	202 / 2.3	83 / 2.0	40 / 1.0
Hadronic events/crossing at IP	0.07	0.19	0.57	2.7
Coherent pairs at IP	10	100	5 10 ⁷	3.8 108

Center-of-mass energy


BDS length (km)

Total site length km

Wall plug to beam transfer eff

Total power consumption MW

Example Site at CERN

Detector Reserve

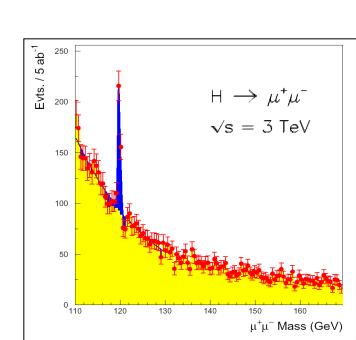
(S)LHC, ILC, CLIC reach

	LHC 100 fb ⁻¹	ILC 800 GeV 500 fb ⁻¹	SLHC 1000 fb ⁻¹	CLIC 3 TeV 1000 fb ⁻¹
Squarks [TeV]	2.5	0.4	3	1.5
Sleptons [TeV]	0.34	0.4		1.5
New gauge boson Z' [TeV]	5	8	6	22
Excited quark q* [TeV]	6.5	0.8	7.5	3
Excited lepton l* [TeV]	3.4	0.8		3
Two extra space dimensions [TeV]	9	5-8.5	12	20-35
Strong WLWL scattering	2σ	-	4σ	70σ
Triple-gauge Coupling (95%)	.0014	0.0004	0.0006	0.00013

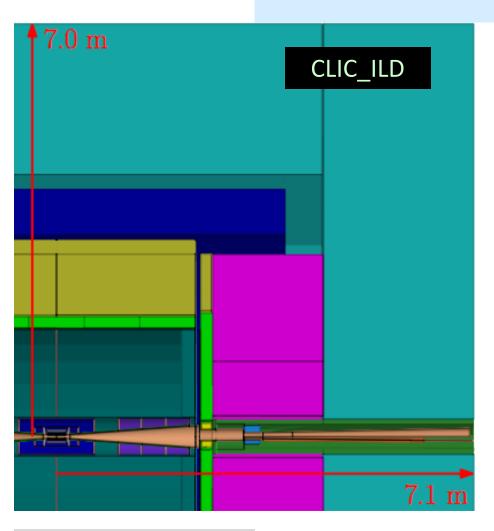
CLIC Physics up to 3 TeV

What can CLIC provide in the 0.5-3 TeV range? In a nutshell...

Higgs physics:

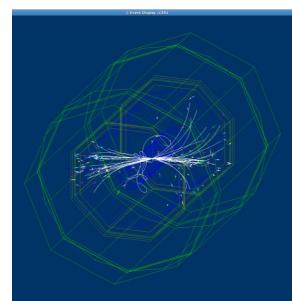

- •Complete study of the light standard-model Higgs boson, including rare decay modes (rates factor ~5 higher at 3 TeV than at 500 GeV)
 - Higgs coupling to leptons
 - •Study of triple Higgs coupling using double Higgs production
- Study of heavy Higgs bosons (supersymmetry models)

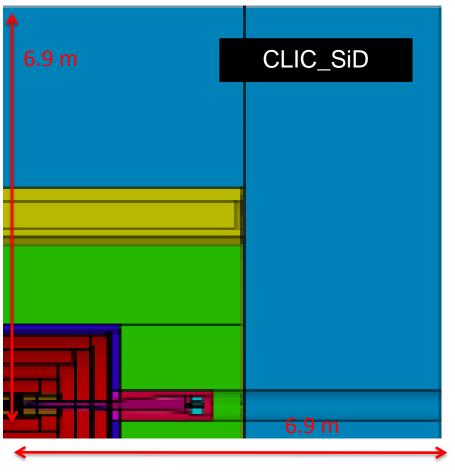
Supersymmetry:


Extensive reach to measure SUSY particles

And in addition:

- Probe for theories of extra dimensions
- New heavy gauge bosons (e.g. Z')
- Excited quarks or leptons


ILD concept adapted to CLIC

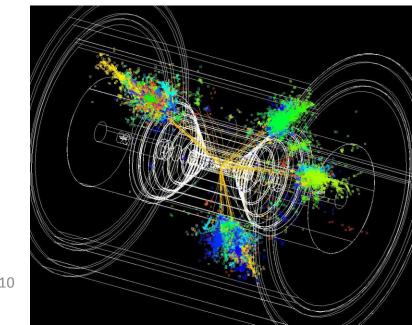

Changes to the ILD detector:

- 20 mrad crossing angle
- Vertex Detector to ~30 mm inner radius, due to Beam-Beam Background
- HCAL barrel with 77 layers of 1 cm tungsten
- HCAL endcap with 70 layers of 2 cm steel plates
- Forward (FCAL) region adaptations
 Fully implemented in Mokka/Marlin

Andre Sailer Berlin Humboldt /CERN

SiD concept adapted to CLIC

Changes to the SiD detector:


- 20 mrad crossing angle
- Vertex Detector to ~30 mm inner radius, due to Beam-Beam Background
- HCAL barrel with 77 layers of 1 cm tungsten
- HCAL endcap with 70 layers of 2 cm steel
- Inner bore of cryostat moved to 2.9 m radius
- Forward (FCAL) region adaptations

Fully implemented in SiD SLiC software

Christian Grefe Bonn Univ. / CERN

te ICHEP Paris, July 24, 2010

Jet Energy Resolution and PFA

- Is an ILD-sized detector based on PFA suitable for CLIC?
- Defined modified ILD+ model:
 - B = 4.0 T (ILD = 3.5 T)
 - HCAL = $8 \Lambda_I$ (ILD = $6 \Lambda_I$)
- Jet energy resolution
 - using unmodified algorithm

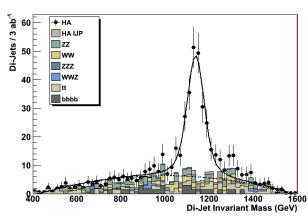
PFA

E _{JET}	$\sigma_{\rm E}/{\rm E} = \alpha/\sqrt{{\rm E}_{\rm jj}} {\rm cos}\theta < 0.7$	σ ε/Ε j
45 GeV	25.2 %	3.7 %
100 GeV	28.7 %	2.9 %
180 GeV	37.5 %	2.8 %
250 GeV	44.7 %	2.8 %
375 GeV	71.7 %	3.2 %
500 GeV	78.0 %	3.5 %

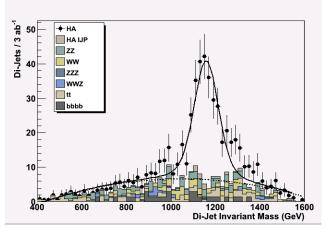
Mark Thomson Cambridge

• Meet "LC jet energy resolution goal [~3.5%]" for 500 GeV jets

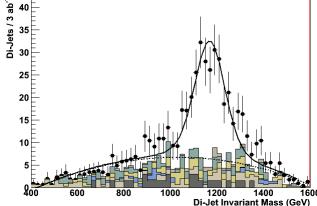
Beam-Induced Background and Time-Stamping


About 3 γγ=> hadron events per bunch crossing

• energy goes mostly in the forward region


Simulation example of heavy Higgs doublet H⁰A⁰ at ~1.1 TeV mass (supersymmetry K' point)

$$e+e- \rightarrow H^0A^0 \rightarrow bbbb$$

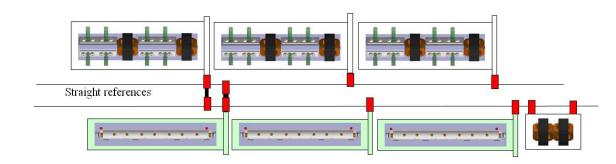

- Signal + full standard model background + γγ=>hadron background
- CLIC-ILD detector: Mokka+Marlin simulation, reconstruction + kinematic fit.

Zero bunch crossings M_Δ mass resol. 3.8 GeV

20 bunch crossings M_Δ mass resol. 5.6 GeV

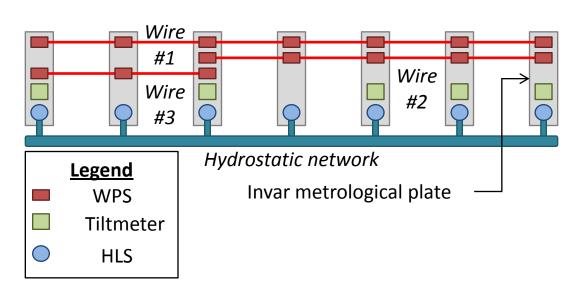
40 bunch crossings M_Δ mass resol. 8.2 GeV

Feasibility Reserve

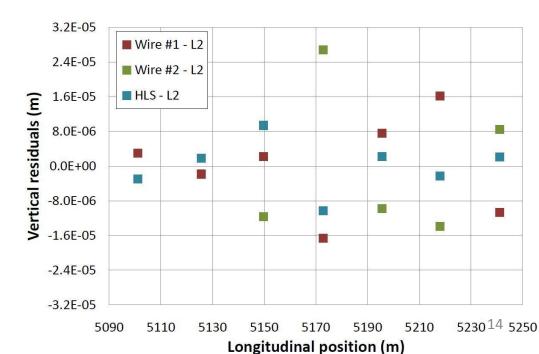

Operation & Machine Protection System

- Basic concept is being developed (M. Jonker et al.)
 - based on LHC experience
- Loss monitoring/control
- Startup scenarios
- Accidental beam losses
 - Slow drifts
 - e.g. temperature
 - Next pulse permit (if pulse is OK next pulse is allowed otherwise safe beam operation)
 - Slow trips
 - e.g. magnet failure
 - interlock 2ms before pulse
 - Fast trips
 - e.g. RF or kickers
 - reduce incidence frequency and impact
 - protective masks

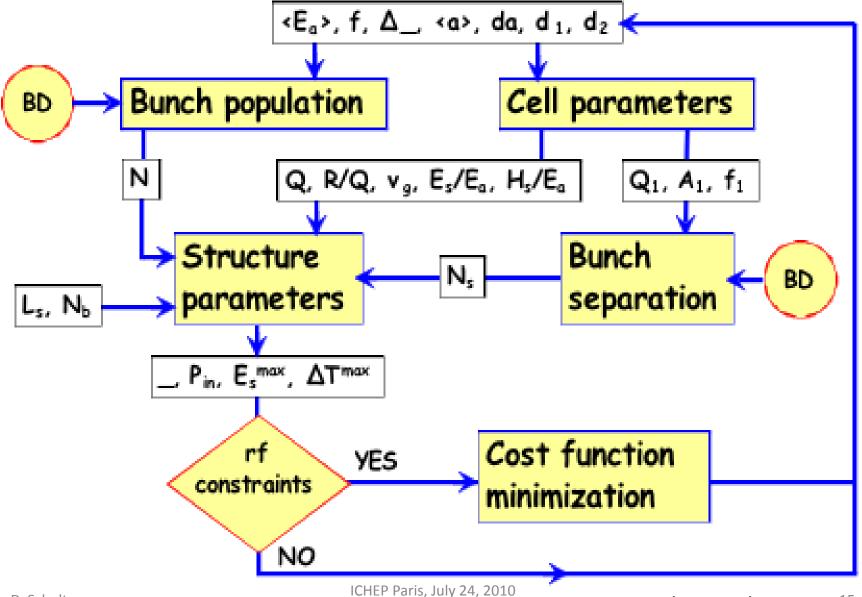
Main Linac Alignment Concept


- Pre-alignment O(10um)
 - with wire system
 - detailed model in simulations
- Dispersion free steering
 - aligns BPMs and quadrupoles
- Move girders onto the beam
 - use wakemonitors
 - removes wakefield effects

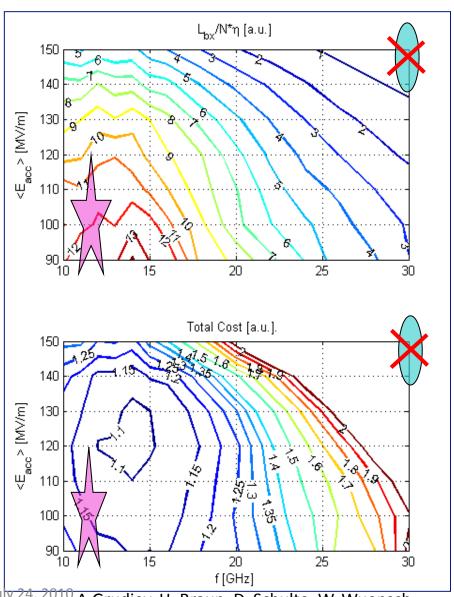
- Straight reference line defined by overlapping wires
- Girders are aligned to these wires
- Detailed work ongoing on module integration, mechanical alignment in module, wire system test, sensor cost reduction, use of laser system


H. Mainaud-Durand et al. CERN

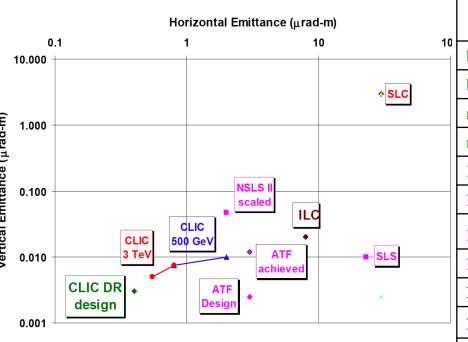
TT1 Alignment Results



- RMS error of 11µm found
 - Target is 10μm
- More work remains to be done
 - Found two bad points due to mechanical problem
 - Stake-out error needs to be determined



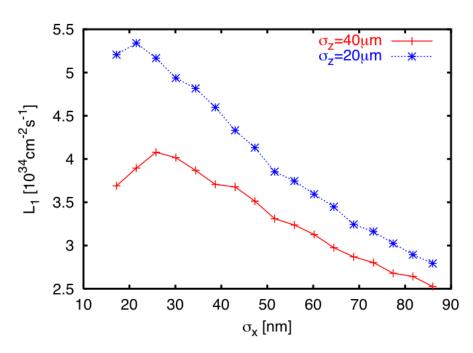
Parameter Optimisation


Optimisation Results

- Optimisation figure of merit:
 - Minimum project cost for 3TeV with $L_{0.01}=2\ 10^{3}$ cm⁻²s⁻¹
- Structure limits
 - RF breakdown scaling (E_{surf} <260MV/m , P/C $\tau^{1/3}$ limited) RF pulse heating (ΔT <56°K)
- Beam dynamics
 - Beam-beam effects
 - Damping rings, BDS
 - Main linac emittance preservation wake fields
- Cost model
- Merged into one big model
- Chose 100MV/m and 12GHz

ICHEP Paris, July 24, 2010 A.Grudiev, H. Braun, D. Schulte, W. Wuensale.

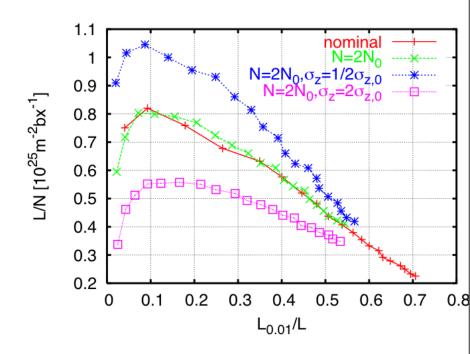
Damping Ring Design



PARAMETER	NLC	CLIC (3TeV)
bunch population (10 ⁹)	7.5	4.1
bunch spacing [ns]	1.4	0.5
number of bunches/train	192	316
number of trains	3	1
Repetition rate [Hz]	120	50
Extracted hor. normalized emittance [nm]	2370	<500
Extracted ver. normalized emittance [nm]	<30	<5
Extracted long. normalized emittance [keV.m]	10.9	<5
Injected hor. normalized emittance [µm]	150	63
Injected ver. normalized emittance [µm]	150	1.5
Injected long. normalized emittance [keV.m]	13.18	1240

- Present CLIC DR design for 3TeV achieves goals for transverse emittances with a 20%-30% margin (380nm horizontal and 4.1nm vertical)
- Conservative DR output emittances (2.4µm horizontal, 10nm vertical) for CLIC @ 500GeV scaled from operational or approved light source projects (NSLSII, SLS)
- Route to lower emittances to be defined

ICHEP Paris, July 24, 2010


Horizontal Beam Size Optimisation

Total luminosity for $\Upsilon\gg 1$

$$\mathcal{L} \propto rac{N}{\sigma_x} rac{\eta}{\sigma_y} \propto rac{n_{\gamma}^{3/2}}{\sqrt{\sigma_z}} rac{\eta}{\sigma_y}$$

large $n_{\gamma} \Rightarrow \text{higher } \mathcal{L} \Rightarrow \text{degraded spectrum}$

chose n_{γ} , e.g. maximum $L_{0.01}$ or $L_{0.01}/L=0.4$ or . . .

$$\mathcal{L}_{0.01} \propto rac{\eta}{\sqrt{\sigma_z}\sigma_y}$$

Project Preparation

Project cost, schedule, site, integration aspects and many technical details are critical part of a project

- Analytic cost estimate is being prepared (Ph. Lebrun et al.)
 - To verify previous synthetic cost estimate
 - To identify cost drivers
 - In collaboration with ILC to exploit synergy and provided comparable basis for cost estimate
- Schedule is being developed (K. Foraz et al.)
- Other technical issues are being addressed
 - To provide base line for conceptual design
 - A number of changes have been implemented
 - To make sure that we did not overlook an issue
 - To prepare for the TDR phase
- Potential sites are being explored (-> J. Osborn et al.)
 - Strong synergy with ILC site studies and common ILC-CLIC working group
- Close collaboration with ILC