Compact Muon Solenoid

Study of the underlying event with the CMS detector at the LHC -,

Andrea Lucaroni - University and INFN Perugia, Italy INFN
On behalf of the CMS Collaboration ( A

In a proton-proton hard process the hadronic final state can be described as the
superposition of different contributions:

Hard Scattering jet»

InitiaI-Sta‘tg diation

O..
O...
L 4

Proton

Underlying Event

<+

.

[By R. Filed]

Outgoing Parton

\4

G‘Eet”
. Final-State Radiation

Outgoing Parton

# T (hard) e ) o
- -initial and final state radiation

proton - beam-beam remnants” (BBR) resulting

Underlying Event from the hadronization of the partonic
constituents that did not participate in
other scatters

-hadrons produced in additional multiple

parton interaction (MPI).
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MPT and BBR form the "Underlying Event”, which cannot be uniquely separated from
initial and final state radiation.

The goal is to understand the UE kinematics and dynamics (the energy dependence

evolution).

A good description of UE properties is needed for a proper final state modelling and
hence for any precision SM measurement and new physics search.

The UE observables have been measured for integrated luminosity of 1 nb-! at 7 TeV.
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Event Selection:
-Beam Scintillator Counter (BSC) (L1) -Kinematics cuts p_T>0.5 GeV/c, |n|<2

The CMS Full Silicon Tracker

-Good primary vertex

-presence of leading track-jet (offline)

desighed to study proton Microstrip Tracker

Track Selection:

-Association of tracks to primary vertex

-production of the partonic hard scattering

The Compact Muon Solenoid is ~ The CMS Tracker is made of a Silicon
a general purpose detector Pixel vertex detector and a Silicon

proton and ion-ion collisions at * (100 x 150) um= pixel, the resolution

Reference: CMS Collaboration, "Tracking and Vertexing Results from
Total weight 12500 t, Overall diameter 15 m, Overall length 21.6 m, Magnetic field 4 Tesla Fir.s.r CO“iSionS", CMS PAS TRK_IO_OOl (2010)

We present 0.9 and 7 TeV data in comparison with different MC predictions after
full detector simulation (different PYTHIA 6 tunes and PYTHIA 8)
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collisions at 1.8 TeV", Phys. Rev D65 (2002) 092002. doi:10.1103/PhysRevD.65.092002

Analysis strategy

Reconstructed tracks are used as input for a
SISCone clustering algorithm, forming track-jets.
The leading track-jet provides an energy scale and

the LHC. is 10 (r) x 20 (z) um? defines a direction in the ¢ plane.

* 81 - 172 pm pich in microstrip sensors, The azimuthal distance between track and leading track-jet
The Silicon Tracker, inside the the resolution change from direction define 3 regions (same size):
3.8 Tesla superconducting 25 um to 140 um Toward |Ad| < 600°
solenoid, is designed for the
best reconstruction of charged  Track momentum resolution is: Away |AG| > 12009
particles (momentum, position o(p_T)/p_T ~ 2% for track with  Main observables are:
and decay vertices) Inl< 1.4 d2N,,/dnd(A¢) charged multiplicity Transverse 60%|A¢| <1209

d*Zp_T/dnd(A¢) energy density JE contribution is maximized in the transverse region.

Several sources of systematic uncertainties have been considered:
-Track Selection (evaluated by applying different cuts) Er Total
-Contribution from misalignment, beam spot position,  d?N.,/dnd(A¢) (pT=20 GeV/c) 1.8%

-6ood quality tracks (relative prerror<5 %) dead channels map and material budget d®zp_T/dnd(A¢) (pT=20 6eV/c) 2.0%

background contamination from secondaries and photon Ne/dNe, — (Nep=4) 1.0%
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The strong growth of UE activity with /s is also striking in the comparison of the
normalized distribution of charge particle multiplicity and of scalar Zp_T as well as in
p_T spectra.
The present study, with a comparison of data taken at 0.9 and 7 TeV, References:

favour a relatively strong /s dependence of p_T-cutoff, as in tune DW,
compared to a lower value as in tune D6T.
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