The SuperKEKB Accelerator Status

M.Iwasaki (KEK) for the SuperKEKB accelerator group

KEKB to SuperKEKB : current status KEKB operation finished at 9:00 am June 30, 2010

SuperKEKB budget is partially approved

- Damping ring : 580M yen (~5.8M\$) (FY2010)

- Special budget "Very Advanced Research Support Program" 1B yen (~100M\$) (FY2010-2012)

→ Start construction (FY2010-2013)

The KEKB B-factory in Japan More than1ab⁻¹ data / 11 years The world highest luminosity

The world highest luminosity

→ Will be upgraded to <u>SuperKEKB</u>

Strategies for increasing Luminosity

Nano-Beam scheme

- First proposed by P.Raimondi for SuperB
- To increase luminosity, squeeze beams to nanometer scale
- However, squeezing beams in stronger magnetic field saturated by hourglass effect

\rightarrow Enlarge crossing angle

and intersect bunches only at highly focused region

Machine Design Parameters

parameters		KEKB		SuperKEKB		unito
		LER	HER	LER	HER	units
Beam energy	Eb	3.5	8	4	7	GeV
Half crossing angle	φ	11		41.5		mrad
Horizontal emittance	٤x	18	24	3.2	5.0	nm
Emittance ratio	κ	0.88	0.66	0.27	0.25	%
Beta functions at IP	β_x^*/β_y^*	1200/5.9		32/0.27	25/0.31	mm
Beam currents	l _b	1.64	1.19	3.60	2.60	А
beam-beam parameter	ξy	0.129	0.090	0.0886	0.0830	
Luminosity	L	2.1 x 10 ³⁴		8 x 10 ³⁵		cm ⁻² s ⁻¹

• Small beam size & high current to increase luminosity

- Large crossing angle
- Change beam energies to solve the problem on LER short lifetime

KEKB to SuperKEKB How to upgrade

[SR Channel]

[Beam Channel]

Major items to upgrade - New Ante-chamber beam pipes

Mitigation techniques for suppression of electron cloud.

- New IR design

New superconducting/permanent magnets around IP. Optimization of the compensation solenoid. Local Chromaticity correction sections for both rings.

New low emittance optics for both e⁺e⁻ rings

Replace dipoles & change the wiggler layout for positron ring

- New low emittance beam injections

New damping ring and target for positrons / New RF gun for electrons

- Higher beam currents

Add / modify the RF systems

- Precise beam diagnostics and tunings

More precise magnet setting ⇔ power supplies.

New Ante-chamber beam ducts TIN-coated beam ducts with ante-chambers to suppress - Heating of components : HOM and SR - Electron cloud instability Y.Suetsugu

 Low SR power density
 Less photoelectrons in beam pipe
 Low beam impedance

intense SR power

New Ante-chamber beam ducts In the place with less SR power, Aluminium beam ducts will be installed

Aluminum-alloy duct

Y.Suetsugu

New Final-Focusing system

- Consists with superconducting and permanent magnets
- Final focusing Q-magnets for each beam
- Crossing angle 83 mrad to make the FF magnets close to IP

Superconducting Magnet R&D

N.Ohuchi

Superconducting Magnet R&D

Prototype Q-magnet (collared)

N.Ohuchi

Test winding for QC1 corrector coil

7.8cm diameter

3.8cm diameter

Superconducting Magnet R&D

Prototype Q-magnet (collared)

N.Ohuchi

Test winding for QC1 corrector coil

7.8cm diameter

Very compact superconducting magnets for final focusing system

3.8cm diameter

New IR design based on the Nano-beam scheme Optimization of the compensation solenoid N. Ohuchi

Fringe fields by compensation solenoid increase the vertical emittance To solve this → The field change must be as smooth as possible Solenoid field must be canceled within the IR region

New IR design based on the Nano-beam scheme The new IP beam pipe design

- Crotched structures (Two FF Q-magnets in both sides)
 - 1cm radius to avoid the resonant cavity structure

- 4.5mm radius part to collimate SR from FF Q-magnets

- Beam Position Monitors are on the IP beam pipe

~100 dipole magnets in the arc sections are replaced from 0.89 to 4 m dipoles.

BELLE-II TDR

New low emittance lattice design Achieving low emittance with minimum change

BELLE-II TDR

New Positron Damping Ring

We construct a positron damping ring for the very low emittance beam injection

M.Kikuchi

1	
None Case Case Case Case Case Case Case Cas	
	I

e+ DR

		and the fact of the	
Beam energy (GeV)	1.1		
Circumference (m)	135		
# of train	2		
# of bunches/train	2		
Maximum stored current (mA)	70.8		
Horizontal damping time (ms)	11		
Injected-beam emittance (µm)	1.7		
Emittance @ extraction (H/V) (nm)	42.5 / 2.07		
Cavity voltage (Vc) (MV)	0.5	1.0	1.4
Bunch length (mm)	11.1	7.7	6.5
Momentum compaction (α)	0.0141		
Energy spread (%)	0.055		

Electron cloud will be mitigated by TiN coating and solenoid windings. Founded for some components such as magnets.

SuperKEKB luminosity upgrade projection

Y. Ohnishi

Summary

- KEKB will be upgraded to SuperKEKB

- x40 higher peak luminosity (8x10³⁵cm⁻²s⁻¹)
- x50 integrated luminosity(50 ab⁻¹) within several years operation

SuperKEKB budget is partially approved

Start the SuperKEKB construction Plan to start the operation within FY2014

Please also see "Status and Prospects of SuperKEKB and Belle II" (Y.Ushiroda, 17:15 today @Salle 242A)

Cost estimation

1 (Oku-Yen) = 1.1 M USD = 0.89 M EUR (as of 18 June, 2010)

K. Akai

Components	Cost (Oku-Yen)	Remarks
Linac upgrade and Damping Ring	45	RF electron gun, positron capture section and L-band acc., Damping Ring components, cooling system
Vacuum System	111	beam pipes (ante-chambers, electrodes, etc), pumps and other vacuum components, cooling system
Magnet System	71	magnets, power supplies, cables, cooling system
IR upgrade	14	QCS and other IR hardware
RF System	24	reinforcement of RF stations, improve cavities and rearrangement
Beam monitor and control	31	BPM, SRM, feedback, control system, etc.
Belle upgrade	19	+ in-kind contribution from other institutions
DR tunnel and buildings	24	DR tunnel, buildings for DR and MR
Total	339	

Next Generation B-factories IPAC10 Crab waist scheme for SuperKEKB

New IR design based on the Nano-beam scheme New Final-Focusing system

IR design

Superconducting magnets

 Leakage fields of superconducting magnets are canceled by correction windings on the other beam pipe

Warm bore

Permanent magnets

•Cryostats can be made smaller

Assembly of vacuum chamber can be simpler

- Vacuum pumps can be located nearer IP
- R&D work needed for developing permanent magnets
- Temperature dependence

Tunability (an additional magnet is needed when changing the energy)

Design of IR SC magnets (QC1P)

Next Generation B-factories IPAC10 BELLE-II TDR N.Ohuchi, M.Tawada