Heavy flavour phenomenology from lattice QCD

Elvira Gámiz

35th International Conference on High Energy Physics

· Paris, 23 July 2010 ·

Outline

- 1. Introduction: Heavy Flavour Phenomenology and lattice QCD
- 2. Decay constants: $P \rightarrow l\nu$
 - 2.1. f_D and f_{D_s} : test of lattice QCD
 - 2.2. f_B and f_{B_s}
- 3. Semileptonic decays
 - 3.1. $B \to \pi l \nu$: exclusive determination of $|V_{ub}|$
 - 3.2. $B \to D^* l \nu$: exclusive determination of $|V_{cb}|$
 - 3.3. D semileptonic decays.
- 4. Neutral B-meson mixing
 - 4.2. B^0 mixing beyond the SM
 - 4.3. D^0 mixing beyond the SM
- 5. Conclusions and outlook

Determination of fundamental parameters of the SM

- * Quark masses: m_c , m_b
- * CKM matrix elements: $|V_{cb}|$, $|V_{cd}|$, $|V_{cs}|$, $|V_{td}|$, $|V_{ts}|$

- # Determination of fundamental parameters of the SM
 - * Quark masses: m_c , m_b
 - * CKM matrix elements: $|V_{cb}|$, $|V_{cd}|$, $|V_{cs}|$, $|V_{td}|$, $|V_{ts}|$
- # Unveiling New Physics effects.
 - * Hints of discrepancies between SM expectations and some flavour observables
 - ** The like-sign dimuon charge asymmetry $A_{sl}^b \equiv \frac{N_b^{++} N_b^{--}}{N_b^{++} + N_b^{--}}$ (3.2 σ)

DØ, Abazov et al, arXiv:1005.2757

** B_s mixing phase β_s as extracted from experiment $(S_{J/\psi\phi})$ and in the SM. $(2-3\sigma)$

CDF/DØ $\Delta\Gamma_s$, β_s CWG, July 2009; M. Bona et al, arXiv:0803.0659

** Leptonic decays of D_s and B^+ .

** **UT fit**: Global fit to the **CKM** unitarity triangle using experimental and theoretical constraints.

$$2-3\sigma$$
 tension in the CKM description

* Tension is between the three most precise constraints: the $K^0 - \bar{K}^0$ mixing parameter ϵ_K , the ratio of mass differences $\Delta M_{B_s}/\Delta M_{B_d}$ describing $B^0 - \bar{B}^0$ mixing and $\sin(2\beta)$.

Laiho, Van de Water and Lunghi, Phys.Rev.D81:034503(2010)

Constraints from $\Delta M_d/\Delta M_s$ and ε_K limited by lattice errors for $\xi=\frac{f_{B_s}\sqrt{B_{B_s}}}{f_{B_d}\sqrt{B_{B_d}}}$ and $|V_{cb}|.$

- E. Lunghi and A. Soni, arXiv:0912.0002: UT analysis without using semileptonic decays
 - * $|V_{ub}|$ and $|V_{cb}|$ inclusive and exclusive disagree by $pprox 2\sigma$
 - \rightarrow eliminate the $|V_{cb}|$ constraint from the analysis in favor of

$$f_{B_s^0}\sqrt{\hat{B}_{B_s^0}}$$
 or $\mathcal{B}r(B o au
u) imes f_{B_d}^{-2}$

* 1.8σ tension observed.

- E. Lunghi and A. Soni, arXiv:0912.0002: UT analysis without using semileptonic decays
 - * $|V_{ub}|$ and $|V_{cb}|$ inclusive and exclusive disagree by $\approx 2\sigma$ \rightarrow eliminate the $|V_{cb}|$ constraint from the analysis in favor of

$$f_{B_s^0}\sqrt{\hat{B}_{B_s^0}}$$
 or $\mathcal{B}r(B o au
u) imes f_{B_d}^{-2}$

* 1.8σ tension observed.

Constraining New Physics Models

1.2. Introduction: Lattice QCD

Lattice QCD is a quantitative non-perturbative formulation of QCD based only on first principles.

Goal: Precise calculations ($\sim 5\%$ error)

1.2. Introduction: Lattice QCD

Lattice QCD is a quantitative non-perturbative formulation of QCD based only on first principles.

Goal: Precise calculations ($\sim 5\%$ error)

- # Precise lattice calculations for stable (or almost stable) hadron masses and amplitudes with no more then one initial (final) state hadron.
 - * Unquenched calculations: include vacuum polarization effects in a realistic way $(N_f=2+1)$.
 - ** $N_f = 2 + 1$.
 - ** $N_f = 2 + 1 + 1$.
 - * Control over systematic errors: including chiral extrapolation, discretization (continuum limit), renormalization, finite volume ...

1.3. Introduction: Heavy quark formulations

- # Problem is discretization errors ($\simeq m_Q a, (m_Q a)^2, \cdots$) if $m_Q a$ is large.
- # Effective theories: Need to include multiple operators matched to full QCD. B-physics only.
 - * Non-relativistic QCD (NRQCD): Discretized non-relativistic expansion of QCD lagrangian.
 - ** **HPQCD**: Improved through $\mathcal{O}(1/M^2)$, $\mathcal{O}(a^2)$ and leading relativistic $\mathcal{O}(1/M^3)$.
 - * Heavy Quark Effective Theory (HQET): Systematic expansion in Λ_{QCD}/m_b
 - ** ALPHA
 - * Static approximation: Leading order HQET.
 - static + relativ. (m_c) simulations interpolation to m_b
 - ** INFN-TOV, ALPHA, ETMC

1.3. Introduction: Heavy quark formulations

Relativistic formulations:

- * Wilson-like fermions: Clover, twisted mass. Used for charm: discretization errors are $\mathcal{O}((am_c)^2)$.
 - ** ALPHA, ETMC.
- * Fermilab-like fermions: Fermilab, RHQ. Relativistic clover action with the Fermilab (HQET) interpretation. Used for charm and bottom.
 - ** FNAL/MILC, PACS-CS, RBC/UKQCD.
- * HISQ: Highly improved staggered fermions. No tree level a^2 errors, highly reduce $\mathcal{O}(a^2\alpha_s)$ errors, no tree-level $\mathcal{O}((am)^4)$ at first order in the quark velocity v/c.

E. Follana et al, HPQCD coll., Phys.Rev.D75:054502 (2007)

- \rightarrow accurate results for charm quarks (can use Hisq for $a \leq 0.15 \ fm$)
- ** HPQCD
- ** Starting to be extended to the bottom region.

2. Decay constants: $P \rightarrow l\nu$

Purely leptonic decays can be used to extract CKM matrix elements

$$\Gamma(P_{ab} \to l\nu) \propto f_P^2 |V_{ab}|^2$$

or testing **SM/lattice** predictions

2. Decay constants: $P \rightarrow l\nu$

Purely leptonic decays can be used to extract **CKM** matrix **elements**

$$\Gamma(P_{ab} \to l\nu) \propto f_P^2 |V_{ab}|^2$$

or testing **SM/lattice** predictions

Simple matrix element $\langle 0|\bar{q}\gamma_{\mu}\gamma_{5}h|P(p)\rangle=if_{P}p_{\mu}$ \rightarrow precise calculations

$$\underbrace{B(D_q \to l\nu)}_{\text{experiment}} \propto |V_{cq}|^2 \underbrace{f_{D_q}^2}_{\text{lattice}}$$

Results (some preliminary) from several groups with $N_f=2+1$ and $N_f=2+1+1$

Collaboration	Configurations	Status	Light	Heavy	a
HPQCD	$MILC\ N_f = 2+1$	Final	Hisq	Hisq	5/3
FNAL/MILC	$\mathbf{MILC}\ N_f = 2+1$	Prelim.	Asqtad	Fermilab	3
ETMC	ETMC $N_f = 2$	Final	tm	tm	3
ETMC	ETMC $N_f = 2 + 1 + 1$	Prelim.	OS	OS	2

- **HPQCD**: PRL100:062002(2008), Lattice 2010.
- FNAL/MILC: talk by J. Simone, Lattice 2010
- **ETMC** $(N_f = 2)$: JHEP 0907:043(2009)
- ETMC $(N_f = 2 + 1 + 1)$: talk by C. Urbach at Lattice 2010

Theory and experiment are in a reasonable agreement.

 f_{D_s} puzzle : 3.8σ difference (2007) $\rightarrow 1.7\sigma$ difference (2010) because of

- * Change in experimental average (CLEO, BaBar)
- * Update in the value of r_1 used by HPQCD (about one σ in f_{D,D_s})

Theory and experiment are in a reasonable agreement.

 f_{D_s} puzzle : 3.8σ difference (2007) $\rightarrow 1.7\sigma$ difference (2010) because of

- * Change in experimental average (CLEO, BaBar)
- * Update in the value of r_1 used by HPQCD (about one σ in f_{D,D_s})
- # Errors at the 2-4% level.

Theory and experiment are in a reasonable agreement.

 f_{D_s} puzzle : 3.8σ difference (2007) $\rightarrow 1.7\sigma$ difference (2010) because of

- * Change in experimental average (CLEO, BaBar)
- * Update in the value of r_1 used by HPQCD (about one σ in f_{D,D_s})
- # Errors at the 2-4% level.
- $\#\sim 1\%$ error reachable in 5 years with: smaller a, more configurations, more information per configuration, run nearer physical $m_{u,d}$, including sea charm ...

Extraction of CKM matrix elements: $B(B^- \to \tau^- \bar{\nu}_\tau) \propto |V_{ub}|^2$ experiment lattice

$$(\langle 0|\bar{q}\gamma_{\mu}\gamma_{5}b|B_{q}(p)\rangle=if_{B_{q}}p_{\mu})$$

Extraction of CKM matrix elements: $B(B^- \to \tau^- \bar{\nu}_\tau) \propto |V_{ub}|^2$ experiment lattice

$$(\langle 0|\bar{q}\gamma_{\mu}\gamma_{5}b|B_{q}(p)\rangle = if_{B_{q}}p_{\mu})$$

- # Decay constants needed in the SM prediction for processes potentially very sensitive to BSM effects: for example, f_{B_S} for $B_s \to \mu^+ \mu^-$
- $\# B^- \to \tau^- \bar{\nu}_{\tau}$ is a sensitive probe of effects from charged Higgs bosons.

Collaboration	Configurations	Status	Light	Heavy	a
HPQCD		Final	Asqtad	NRQCD	2
FNAL/MILC	$MILC N_f = 2 + 1$	Prelim.	Asqtad	Fermilab	3
ETMC	ETMC $N_f = 2$	Final	twisted mass	twisted mass	2

• **HPQCD**: PRD80:014503 (2009)

• FNAL/MILC: talk by J. Simone, Lattice 2010

• **ETMC** ($N_f = 2$): JHEP 1004:049(2009)

* experimental result obtained using average

of inclusive and exclusive

$$|V_{ub}| = (3.97 \pm 0.55) \times 10^{-3}$$

and average of experimental

measurements (Babar, Belle)

$$\mathcal{B}(B^- \to \tau^- \overline{\nu}) = (1.72^{+0.43}_{-0.42})$$

Rosner and Stone, arXiv:1002.1655

** **HPQCD** results updated using new value of $r_1 = 0.3133(23)(3)$

* experimental result obtained using average

of inclusive and exclusive

$$|V_{ub}| = (3.97 \pm 0.55) \times 10^{-3}$$

and average of experimental

measurements (Babar, Belle)

$$\mathcal{B}(B^- \to \tau^- \overline{\nu}) = (1.72^{+0.43}_{-0.42})$$

Rosner and Stone, arXiv:1002.1655

- ** **HPQCD** results updated using new value of $r_1 = 0.3133(23)(3)$
- # Theory and experiment are in a reasonable agreement ($\sim 1.3\sigma$).
 - * But taking only exclusive $|V_{ub}| \rightarrow$ disagreement is $\sim 2.3\sigma$

Need to clarify the difference between $|V_{ub}^{incl.}|$ and $|V_{ub}^{excl.}|$

* Inclusive V_{ub} varies depending upon theoretical framework, and is highly sensitive to m_b .

HPQCD Testing relativistic action for masses heavier than charm (no HQET used at any step).

E. Follana, Lattice 2010

- * Relativistic bottom $(am_b < 1)$ possible if $a < 0.04 \ fm$ lattices are generated (current values $a \ge 0.045 \ fm$)
- * Current status: Simulations at masses $m_c \le m_h < m_b$ and several lattice spacings \to fit heavy quark mass dependence (HQET) including a corrections

- ** Comparison of extrapolated results with those using NRQCD
- ** No extrapolated results reported yet

3. Semileptonic decays

$$\frac{d}{dq^2}\Gamma(P_1 \to P_2 l\nu) \propto |V_{ab}|^2 f_+^{P_1 \to P_2}(q^2)|^2$$

$$\langle P_2 | V^{\mu} | P_1 \rangle = f_+(q^2) \left[p_{P_1}^{\mu} + p_{P_2}^{\mu} - \frac{m_{P_1}^2 - m_{P_2}^2}{q^2} q^{\mu} \right]$$

$$+ f_0(q^2) = \frac{m_D^2 - m_P^2}{q^2} q^{\mu}$$

$$q = p_{P_2} - p_{P_1}$$

Issue: discretization errors that goes as $(ap)^n$:

$$\langle P_1 | V_{\mu} | P_2 \rangle^{lat} = \langle P_1 | V_{\mu} | P_2 \rangle^{cont} + \mathcal{O}((ap_1)^n, (ap_2)^n)$$

$$Br(B \to \pi l \nu) = \frac{|V_{ub}|^2}{\int_0^{q_{max}^2}} dq^2 f_+^{B \to \pi} (q^2)^2 \times \text{(known factors)}$$

Problem: Poor overlap in q^2 between lattice and experiment \rightarrow increases the total error

$$Br(B \to \pi l \nu) = \frac{|V_{ub}|^2}{\int_0^{q_{max}^2} dq^2 f_+^{B \to \pi} (q^2)^2} \times \text{(known factors)}$$

- # **Problem**: Poor overlap in q^2 between lattice and experiment \rightarrow increases the total error
 - \Longrightarrow Use **model-independent** parametrization to combine theoretical and experimental data over full q^2 region
- * z-fit: Model-independent expression based on analyticity, unitarity, and heavy quark symmetry to describe the shape of the form factor

Arnesen et al.; Becher & Hill; P. Ball; P. Mackenzie and R. Van de Water

$$Br(B \to \pi l \nu) = \frac{|V_{ub}|^2}{\int_0^{q_{max}^2} dq^2 f_+^{B \to \pi} (q^2)^2} \times (\text{known factors})$$

- # **Problem**: Poor overlap in q^2 between lattice and experiment \rightarrow increases the total error
 - \implies Use **model-independent** parametrization to combine theoretical and experimental data over full q^2 region
- * z-fit: Model-independent expression based on analyticity, unitarity, and heavy quark symmetry to describe the shape of the form factor

Arnesen et al.; Becher & Hill; P. Ball; P. Mackenzie and R. Van de Water

FNAL-MILC, PRD79:05407 (2009)

- * $N_f = 2 + 1$ (2 values of a)
- * b quarks: Fermilab action.
- * Using BaBar exper. data
 - **B. Aubert**, PRL98:141801(2007)

$$|V_{ub}| \times 10^3 = 3.38 \pm 0.36$$

- # First unquenched calculation: E. Gulez et al [HPQCD], PRD73:074502(2006), PRD75:119906(2006)
 - * $N_f = 2 + 1$ MILC configurations for two values of a
 - * Staggered Asqtad light quarks and NRQCD b quarks.
 - * Using HFAG 08 average for $f_+^{B \to \pi}(q^2)$ $(q^2 > 16 GeV^2)$

$$|V_{ub}| = (3.40 \pm 0.20_{exp}^{+0.59}_{-0.39}) \times 10^{-3}$$

- # First unquenched calculation: E. Gulez et al [HPQCD], PRD73:074502(2006), PRD75:119906(2006)
 - * $N_f = 2 + 1$ MILC configurations for two values of a
 - * Staggered Asqtad light quarks and NRQCD b quarks.
 - * Using HFAG 08 average for $f_+^{B \to \pi}(q^2)$ $(q^2 > 16 GeV^2)$

$$|V_{ub}| = (3.40 \pm 0.20_{exp} ^{+0.59}_{-0.39}) \times 10^{-3}$$

* $\sim 2\sigma$ difference with inclusive determinations

$$|V_{ub}^{incl.,average}| imes 10^3 = 4.21 \pm 0.25$$
 Rosner and Stone, arXiv:1002.1655

** Discrepancy could be due to right handed currents \to need calculation of $B\to \rho l \nu$ M. Neubert

- $\# |V_{cb}|$ normalizes the whole unitarity triangle.
- $\# |V_{cb}|$ needed as an input in ϵ_K and rare kaon decays $(Br(K \to \pi \nu \bar{\nu}))$.

- $\# |V_{cb}|$ normalizes the whole unitarity triangle.
- $\# |V_{cb}|$ needed as an input in ϵ_K and rare kaon decays $(Br(K \to \pi \nu \bar{\nu}))$.
- # Unquenched $N_f = 2 + 1$ lattice determinations of $|V_{cb}|$:

Blind analysis by FNAL/MILC

- * $B \to D^* l \nu$ rate at zero recoil $\propto |V_{cb} h_A(1)|$: take shape from exper.
- * Double ratio method: $|h_A(1)|^2 = \frac{\langle D^* | \bar{c}\gamma_j\gamma_5 b | \bar{B}\rangle \langle \bar{B} | \bar{b}\gamma_j\gamma_5 c | D^*\rangle}{\langle D^* | \bar{c}\gamma_4 c | D^*\rangle \langle \bar{B} | \bar{b}\gamma_4 b | \bar{B}\rangle}$

- $\# |V_{cb}|$ normalizes the whole unitarity triangle.
- $\# |V_{cb}|$ needed as an input in ϵ_K and rare kaon decays $(Br(K \to \pi \nu \bar{\nu}))$.
- # Unquenched $N_f = 2 + 1$ lattice determinations of $|V_{cb}|$:

Blind analysis by FNAL/MILC

- * $B \to D^* l \nu$ rate at zero recoil $\propto |V_{cb} h_A(1)|$: take shape from exper.
- * Double ratio method: $|h_A(1)|^2 = \frac{\langle D^*|\bar{c}\gamma_j\gamma_5b|\bar{B}\rangle\langle\bar{B}|\bar{b}\gamma_j\gamma_5c|D^*\rangle}{\langle D^*|\bar{c}\gamma_4c|D^*\rangle\langle\bar{B}|\bar{b}\gamma_4b|\bar{B}\rangle}$

Preliminary

- * J. Laiho et al, talk by A. Kronfeld Lattice 2010
- * Smaller (superfine) lattice spacing added.
- * Statistics quadrupled

2008 result C. Bernard et al., Phys.Rev.D79:014506(2009)

$h_A(1)$	stats.	$g_{DD^*\pi}$	ChPT	disc.	$\kappa_{b,c}$	match.	u_0
0.921	± 0.013	± 0.008	± 0.008	± 0.014	± 0.006	± 0.003	± 0.004

 $\rightarrow |V_{cb}| \times 10^3 = (38.9 \pm 0.7_{exp} \pm 1.0_{LQCD})$ using latest HFAG, Kowalewski, FPCP and C. Bernard et al., Phys.Rev.D79:014506(2009) (2.6% error)

2008 result C. Bernard et al., Phys.Rev.D79:014506(2009)

$h_A(1)$	stats.	$g_{DD^*\pi}$	ChPT	disc.	$\kappa_{b,c}$	match.	u_0
0.921	± 0.013	± 0.008	± 0.008	± 0.014	± 0.006	± 0.003	± 0.004

 $\rightarrow |V_{cb}| \times 10^3 = (38.9 \pm 0.7_{exp} \pm 1.0_{LQCD})$ using latest HFAG, Kowalewski, FPCP and C. Bernard et al., Phys.Rev.D79:014506(2009) (2.6% error)

New result: talk by A. Kronfeld Lattice 2010 preliminary (2010)

$F_F h_A(1)$	stats.	$g_{DD^*\pi}$	ChPT	disc.	$\kappa_{b,c}$	match.	u_0
0.921	± 0.005	± 0.009	± 0.007	± 0.010	± 0.005	± 0.003	_

- * Red numbers: still under study.
- * Need to finish systematic error study and unblind: September 2010?.

3.3. D semileptonic decays

CLEO-c, Besson et al PRD80 (2009)

Aubin et al. PRL94(2005)

$$|V_{cs}|f_{+}(0)^{D\to K} = 0.719(\pm 0.8\% \pm 0.7\%)$$
$$|V_{cd}|f_{+}(0)^{D\to \pi} = 0.150(\pm 3\% \pm 0.7\%)$$

 $f_{+}(0)^{D \to K, latt} : 11\%$ error $f_{+}(0)^{D \to \pi, latt} : 10\%$ error

BaBar, Aubert et al PRD76 (2007)

$$|V_{cs}|_{f_+(0)}^{D\to K} = 0.717(\pm 0.8\% \pm 0.7\% \pm 0.7\%)$$
 (last error from $B(D^0 \to K^-\pi^+)$)

* For D decays error in $|V_{cj}|$ dominated by lattice errors

3.3. D semileptonic decays

CLEO-c, Besson et al PRD80 (2009)

Aubin et al. PRL94(2005)

$$|V_{cs}|f_{+}(0)^{D \to K} = 0.719(\pm 0.8\% \pm 0.7\%)$$
$$|V_{cd}|f_{+}(0)^{D \to \pi} = 0.150(\pm 3\% \pm 0.7\%)$$

 $f_{+}(0)^{D \to K, latt}$: 11% error $f_{+}(0)^{D \to \pi, latt}$: 10% error

BaBar, Aubert et al PRD76 (2007)

 $|V_{cs}|f_{+}(0)^{D\to K} = 0.717(\pm 0.8\% \pm 0.7\% \pm 0.7\%)$ (last error from $B(D^0 \to K^-\pi^+)$)

- * For D decays error in $|V_{cj}|$ dominated by lattice errors
- # Testing lattice QCD: shape of the form factors
 - ightharpoonup use same method for other processes like $B
 ightharpoonup \pi l
 u$ or $B
 ightharpoonup K l \overline{l}$

CLEO-c, Besson et al PRD80 (2009)

Aubin et al. PRL94(2005)

$$|V_{cs}|f_{+}(0)^{D\to K} = 0.719(\pm 0.8\% \pm 0.7\%)$$
$$|V_{cd}|f_{+}(0)^{D\to \pi} = 0.150(\pm 3\% \pm 0.7\%)$$

 $f_{+}(0)^{D \to K, latt} : 11\%$ error $f_{+}(0)^{D \to \pi, latt} : 10\%$ error

BaBar, Aubert et al PRD76 (2007)

 $|V_{cs}|f_{+}(0)^{D\to K} = 0.717(\pm 0.8\% \pm 0.7\% \pm 0.7\%)$ (last error from $B(D^0 \to K^-\pi^+)$)

- * For D decays error in $|V_{cj}|$ dominated by lattice errors
- # Testing lattice QCD: shape of the form factors
 - ightarrow use same method for other processes like $B
 ightarrow\pi l
 u$ or $B
 ightarrow K lar{l}$
- # Correlated signals of NP to those in leptonic decays

CLEO-c, Besson et al PRD80 (2009)

Aubin et al. PRL94(2005)

$$|V_{cs}|f_{+}(0)^{D\to K} = 0.719(\pm 0.8\% \pm 0.7\%)$$
$$|V_{cd}|f_{+}(0)^{D\to \pi} = 0.150(\pm 3\% \pm 0.7\%)$$

 $f_{+}(0)^{D \to K, latt} : 11\% \text{ error}$ $f_{+}(0)^{D \to \pi, latt} : 10\% \text{ error}$

BaBar, Aubert et al PRD76 (2007)

$$|V_{cs}| f_{+}(0)^{D \to K} = 0.717(\pm 0.8\% \pm 0.7\% \pm 0.7\%)$$
 (last error from $B(D^0 \to K^-\pi^+)$)

- * For D decays error in $|V_{cj}|$ dominated by lattice errors
- # Testing lattice QCD: shape of the form factors
 - ightharpoonup use same method for other processes like $B
 ightharpoonup \pi l
 u$ or $B
 ightharpoonup K l ar{l}$
- # Correlated signals of NP to those in leptonic decays
- # FNAL/MILC, and HPQCD PRL94:011601(2005) normalization agreed with experiment and predicted shape of the form factors for $D \to K(\pi)$

 $D \to \pi l \nu$ from FNAL/MILC, E.G., Lattice 2010 (preliminary)

$N_f = 2 + 1$, two lattice spacings, MILC sea, Asqtad light valence, and Fermilab charm valence.

 $D \to \pi l \nu$ from FNAL/MILC, E.G., Lattice 2010 (preliminary)

$N_f = 2 + 1$, two lattice spacings, MILC sea, Asqtad light valence, and Fermilab charm valence.

* Chiral+continuum extrapolation for $\chi_{\pi} = \frac{\sqrt{2}E_{\pi}}{4\pi f_{\pi}} < 1$

Comparison of experiment and MILC preliminary results (normalized via $f_+(q^2)/f_+(q^2=0.15~{\rm GeV}^2)$)

Very good agreement with experiment.

* Statistical errors around 5%.

 $D \to \pi l \nu$ from FNAL/MILC, E.G., Lattice 2010 (preliminary)

$N_f = 2 + 1$, two lattice spacings, MILC sea, Asqtad light valence, and Fermilab charm valence.

* Chiral+continuum extrapolation for $\chi_{\pi} = \frac{\sqrt{2}E_{\pi}}{4\pi f_{\pi}} < 1$

Comparison of experiment and MILC preliminary results (normalized via $f_{+}(q^2)/f_{+}(q^2=0.15~{\rm GeV}^2)$)

Very good agreement with experiment.

* Statistical errors around 5%.

* Need include third lattice spacing, more valence quark masses, and use z-expansion to combine with exper. data \rightarrow expect 7-8% error (previous error was 11%). Same for $D \rightarrow Kl\nu$

 $D \to K l \nu$ from HPQCD, H. Na, Lattice 2010 (preliminary)

- $\# N_f = 2 + 1$, two lattice spacings, MILC sea and Hisq valence.
 - * Use PCVC to relate $f_0(q^2)$ to three-point functions with a scalar (versus vector) insertion.

$$q^{\mu}\langle V_{\mu}^{cont.}\rangle = (m_c - m_q)\langle S^{cont.}\rangle \rightarrow f_0(q^2) = \frac{m_c - m_q}{m_D^2 - m_{\pi}^2}\langle S(q^2)\rangle$$

$$f_{+}(0) = f_{0}(0) = \frac{m_{c} - m_{q}}{m_{D}^{2} - m_{\pi}^{2}} \langle S \rangle$$

 $D \to K l \nu$ from HPQCD, H. Na, Lattice 2010 (preliminary)

- $\# N_f = 2 + 1$, two lattice spacings, MILC sea and Hisq valence.
 - * Use PCVC to relate $f_0(q^2)$ to three-point functions with a scalar (versus vector) insertion.

$$q^{\mu}\langle V_{\mu}^{cont.}\rangle = (m_c - m_q)\langle S^{cont.}\rangle \rightarrow f_0(q^2) = \frac{m_c - m_q}{m_D^2 - m_{\pi}^2}\langle S(q^2)\rangle$$

$$f_{+}(0) = f_{0}(0) = \frac{m_{c} - m_{q}}{m_{D}^{2} - m_{\pi}^{2}} \langle S \rangle$$

* Very precise determination of $|V_{cs}|$, but can not get the shape of $f_+(q^2)$. Only $f_0(q^2)$.

 $D \to K l \nu$ from HPQCD, H. Na, Lattice 2010 (preliminary)

- $\# N_f = 2 + 1$, two lattice spacings, MILC sea and Hisq valence.
 - * Use PCVC to relate $f_0(q^2)$ to three-point functions with a scalar (versus vector) insertion.

$$q^{\mu}\langle V_{\mu}^{cont.}\rangle = (m_c - m_q)\langle S^{cont.}\rangle \rightarrow f_0(q^2) = \frac{m_c - m_q}{m_D^2 - m_{\pi}^2}\langle S(q^2)\rangle$$

$$f_{+}(0) = f_{0}(0) = \frac{m_{c} - m_{q}}{m_{D}^{2} - m_{\pi}^{2}} \langle S \rangle$$

- * Very precise determination of $|V_{cs}|$, but can not get the shape of $f_+(q^2)$. Only $f_0(q^2)$.
- * Modified z-expansion: includes a^2 and light quark masses dependence on the coefficients

Preliminary
$$|V_{cs}| = 0.955(10)_{exp}(27)_{LQCD}$$
 Error at the 3% level

* H. Na, Lattice 2010 using average of CLEO-c PRD80(2009) and BaBar PRD76(2007) + PDG $B(D^0 \to K^-\pi^+)$: $f_+^{D\to K}(0)|V_{cs}| = 0.718(8)$

 $D \to \pi(K) l \nu$ from ETMC, S. Di Vita, Lattice 2010 (preliminary)

- $\# N_f = 2$, three lattice spacings, twisted mass sea and valence.
 - * Use double ratio methods → do not need renormalization factors.
 - * Use HMChPT to fit to the data an extrapolate to physical m_{π} , parametrically includes $\mathcal{O}(a^2)$ effects in the formulae

 $D \to \pi(K) l \nu$ from ETMC, S. Di Vita, Lattice 2010 (preliminary)

 $\# N_f = 2$, three lattice spacings, twisted mass sea and valence.

- * Use double ratio methods → do not need renormalization factors.
- * Use HMChPT to fit to the data an extrapolate to physical m_{π} , parametrically includes $\mathcal{O}(a^2)$ effects in the formulae

Good agreement of LQCD with experimental data in the full q^2 range

 $D \to \pi(K) l \nu$ from ETMC, S. Di Vita, Lattice 2010 (preliminary)

 $\# N_f = 2$, three lattice spacings, twisted mass sea and valence.

- * Use double ratio methods → do not need renormalization factors.
- * Use HMChPT to fit to the data an extrapolate to physical m_π , parametrically includes $\mathcal{O}(a^2)$ effects in the formulae

Good agreement of LQCD with experimental data in the full q^2 range

Preliminary, only stats. errors: $f^{D \to \pi}(0) = 0.66(6)$ and $f^{D \to K}(0) = 0.76(4)$

In the Standard Model

$$\Delta M_q|_{theor.} = \frac{G_F^2 M_W^2}{6\pi^2} |V_{tq}^* V_{tb}|^2 \eta_2^B S_0(x_t) M_{B_s} f_{B_q}^2 \hat{B}_{B_q}$$

** Non-perturbative input

$$\frac{8}{3} f_{B_q}^2 B_{B_q}(\mu) M_{B_q}^2 = \langle \bar{B_q^0} | O_1 | B_q^0 \rangle (\mu) \quad \text{with} \quad O_1 \equiv [\overline{b^i} \ q^i]_{V-A} [\overline{b^j} \ q^j]_{V-A}$$

* $\Delta\Gamma$ dominated by CKM-favoured $b \to c\bar{c}s$ tree-level decays.

In the Standard Model

$$\Delta M_q|_{theor.} = \frac{G_F^2 M_W^2}{6\pi^2} |V_{tq}^* V_{tb}|^2 \eta_2^B S_0(x_t) M_{B_s} f_{B_q}^2 \hat{B}_{B_q}$$

** Non-perturbative input

$$\frac{8}{3} f_{B_q}^2 B_{B_q}(\mu) M_{B_q}^2 = \langle \bar{B_q^0} | O_1 | B_q^0 \rangle(\mu) \quad \text{with} \quad O_1 \equiv [\overline{b^i} \ q^i]_{V-A} [\overline{b^j} \ q^j]_{V-A}$$

- * $\Delta\Gamma$ dominated by CKM-favoured $b \to c \bar c s$ tree-level decays.
- # Specially interesting for phenomenology:

$$\xi = \frac{f_{B_s} \sqrt{B_{B_s}}}{f_{B_d} \sqrt{B_{B_d}}}$$

Constraining NP models with ΔM and $\Delta \Gamma$.

Constraining NP models with ΔM and $\Delta \Gamma$.

In conjunction with experimental measurements ...

HFAG 10

CDF $(5.2fb^{-1})$

$$\Delta M_d|_{exp.} = (0.507 \pm 0.005)ps^{-1}$$
 $\Delta M_s|_{exp.} = (17.79 \pm 0.07)ps^{-1}$

HFAG 10

CDF $(5.2fb^{-1})$

$$\left(\frac{\Delta\Gamma}{\Gamma}\right)_d = 0.010 \pm 0.037$$
 $\Delta\Gamma_s = (0.075 \pm 0.035 \pm 0.01)ps^{-1}$

* CDF $(5.2fb^{-1})$, talk by G. Giurgiu

4.1. $N_f = 2 + 1$ unquenched lattice calculations of B^0 mixing parameters

Collaboration	Configurations	Status	Light	Heavy
HPQCD	MILC	Final	Asqtad	NRQCD
FNAL/MILC	MILC	Preliminary	Asqtad	Fermilab
RBC/UKQCD	RBC/UKQCD	Exploratory	domain wall	static
RBC/UKQCD	RBC/UKQCD	Preliminary	domain wall	RHQ

- * Two lattice spacings and extrapolation to the continuum except for the exploratory study by RBC/UKQCD.
 - HPQCD: E. Gámiz et al., Phys.Rev.D80:014503,2009
 - Fermilab lattice/MILC: R.T. Evans et al, Pos(LAT09)052; C. Bouchard et al., Lattice 2010 \rightarrow it can also be used for c quarks.
 - RBC/UKQCD exploratory: C. Albertus et al., arXiv:1001.2023
 - RBC/UKQCD preliminary: O. Witzel et al, Lattice 2010 ightarrow also valid for c

4.1.1. Results: $f_{B_q}\sqrt{B_{B_q}}$

HPQCD, PRD80 (2009) 014503

Chiral+continuum extrapolations: NLO Staggered CHPT.

* Using new value for the lattice scale $r_1 = 0.3133(23)(3)$.

$$f_{B_s} \sqrt{\hat{B}_{B_s}} = 276(6)(18) \text{MeV}$$

$$f_{B_d} \sqrt{\hat{B}_{B_d}} = 224(9)(12) \text{MeV}$$

4.1.2. Results:
$$\xi = \frac{f_{B_s} \sqrt{B_{B_s}}}{f_{B_d} \sqrt{B_{B_d}}}$$

RBC/UKQCD: No extrapolation to the continuum

FNAL/MILC: No renormalization included, but we expect a large cancellation between B_s^0 and B_d^0 renor. corrections.

4.1.2. Results:
$$\xi = \frac{f_{B_s} \sqrt{B_{B_s}}}{f_{B_d} \sqrt{B_{B_d}}}$$

RBC/UKQCD: No extrapolation to the continuum

FNAL/MILC: No renormalization included, but we expect a large cancellation between B_s^0 and B_d^0 renor. corrections.

HPQCD result
$$\Longrightarrow$$
 $\left|\frac{V_{td}}{V_{ts}}\right| = \boxed{0.214(1)(5)}$

4.1.3. Results: Summary of errors

	$f_B\sqrt{B_B}$	ξ			
current	6-7%	3-4% (9% RBC/UKQCD)			
2 years	~ 4-5%	$\sim 1.5\text{-}2\% \ (3\text{-}4\% \ \text{RBC/UKQCD})$			

- # Improvements: smaller lattice spacings, better statistics, more accurate inputs $(am_b, am_s, am_l, a, ...)$, more efficient matching methodology, better fitting and smearing techniques, ...
- # Several high precision determinations of B_s^0 and B_d^0 mixing parameters with different heavy and light formulations in two years.

4.1.4. Calculation of $\Delta\Gamma_{d,s}$

Only unquenched calculation by HPQCD, PRD76:011501(2007):

$$\Delta\Gamma_s = 0.10(3)ps^{-1} \ (\Delta\Gamma_s(CDF) = (0.075 \pm 0.035 \pm 0.01)ps^{-1})$$

* Expect experimental improvements at LHCb

4.1.4. Calculation of $\Delta\Gamma_{d,s}$

Only unquenched calculation by **HPQCD**, PRD76:011501(2007):

$$\Delta\Gamma_s = 0.10(3)ps^{-1} \ (\Delta\Gamma_s(CDF) = (0.075 \pm 0.035 \pm 0.01)ps^{-1})$$

- * Expect experimental improvements at LHCb
- # Wrong-charge semileptonic asymmetry is proportional to

$$a_{sl}^s \propto \frac{\Delta\Gamma}{\Delta M_s} sin(\phi_s)$$

where ϕ_s is the phase of NP and $a_{sl} \equiv \frac{\Gamma(\bar{B}_s \to \mu^+ X) - \Gamma(B_s \to \mu^- X)}{\Gamma(\bar{B}_s \to \mu^+ X) + \Gamma(B_s \to \mu^- X)}$ is related to the dimuon asymmetry by some known factor (neglecting NP effects in B_d^0 mixing)

Effects of heavy new particles seen in the form of effective operators built with **SM** degrees of freedom

$$\mathcal{H}_{eff}^{\Delta F=2} = \sum_{i=1}^{5} C_i Q_i + \sum_{i=1}^{3} \widetilde{C}_i \widetilde{Q}_i$$

** With Q_i and \widetilde{Q}_i four-fermion operators

Effects of heavy new particles seen in the form of effective operators built with **SM** degrees of freedom

$$\mathcal{H}_{eff}^{\Delta F=2} = \sum_{i=1}^{5} C_i Q_i + \sum_{i=1}^{3} \widetilde{C}_i \widetilde{Q}_i$$

** With Q_i and \widetilde{Q}_i four-fermion operators

- ullet C_i,\widetilde{C}_i Wilson coeff. calculated for a particular BSM theory
- ullet $\langle ar{F^0}|Q_i|F^0
 angle$ calculated on the lattice

SM predictions + BSM contributions + experiment

→ constraints on BSM physics

Effects of heavy new particles seen in the form of effective operators built with **SM** degrees of freedom

$$\mathcal{H}_{eff}^{\Delta F=2} = \sum_{i=1}^{5} C_i Q_i + \sum_{i=1}^{3} \widetilde{C}_i \widetilde{Q}_i$$

** With Q_i and \widetilde{Q}_i four-fermion operators

- ullet C_i, \widetilde{C}_i Wilson coeff. calculated for a particular BSM theory
- ullet $\langle \bar{F^0}|Q_i|F^0
 angle$ calculated on the lattice

SM predictions + BSM contributions + experiment

- → constraints on BSM physics
- # Same programme can be applied for extra operators

Effects of heavy new particles seen in the form of effective operators built with **SM** degrees of freedom

$$\mathcal{H}_{eff}^{\Delta F=2} = \sum_{i=1}^{5} C_i Q_i + \sum_{i=1}^{3} \widetilde{C}_i \widetilde{Q}_i$$

** With Q_i and \widetilde{Q}_i four-fermion operators

- ullet C_i,\widetilde{C}_i Wilson coeff. calculated for a particular BSM theory
- ullet $\langle \bar{F^0}|Q_i|F^0
 angle$ calculated on the lattice

SM predictions + BSM contributions + experiment

- → constraints on BSM physics
- # Same programme can be applied for extra operators
- # FNAL/MILC: complete $N_f=2+1$ analysis of $\Delta B=2$ matrix elements underway C. Bouchard, Lattice 2010. HPQCD plans for a similar study.

Goal: errors < 10%.

SM contribution of the order of experiment and dominated by long-distance effects.

SM contribution of the order of experiment and dominated by long-distance effects.

- X * Long distance: Current lattice techniques are inefficient for calculating non-local operators
- * Short distance: High precision calculation on the lattice
 - ** Same effective hamiltonian as for $\Delta B = 2$ processes.
 - ** Comparison with experiment can exclude large regions of parameters in many models, constraining BSM building.
 - E. Golowich, J. Hewett, S. Pakvasa and A. Petrov, PRD 76 (2007)

SM contribution of the order of experiment and dominated by long-distance effects.

- X * Long distance: Current lattice techniques are inefficient for calculating non-local operators
- $\sqrt{\ ^* \ \text{Short distance:}}$ High precision calculation on the lattice
 - ** Same effective hamiltonian as for $\Delta B = 2$ processes.
 - ** Comparison with experiment can exclude large regions of parameters in many models, constraining BSM building.
 - E. Golowich, J. Hewett, S. Pakvasa and A. Petrov, PRD 76 (2007)
- # Latest SM calculations (quenched): L. Lellouch, C.-J. D Lin, PRD64 (2001); Huey-Wen Lin et al, PRD74 (2006) and latest BSM calculation (quenched): R. Gupta et al., PRD55 (1997)

SM contribution of the order of experiment and dominated by long-distance effects.

- X * Long distance: Current lattice techniques are inefficient for calculating non-local operators
- ** Short distance: High precision calculation on the lattice ** Same effective hamiltonian as for $\Delta B = 2$ processes.
 - ** Comparison with experiment can exclude large regions of parameters in many models, constraining BSM building.
- E. Golowich, J. Hewett, S. Pakvasa and A. Petrov, PRD 76 (2007)
- # Latest SM calculations (quenched): L. Lellouch, C.-J. D Lin, PRD64 (2001); Huey-Wen Lin et al, PRD74 (2006) and latest BSM calculation (quenched): R. Gupta et al., PRD55 (1997)
- → A consistent unquenched determination of all matrix elements involved is needed:

SM contribution of the order of experiment and dominated by long-distance effects.

- X * Long distance: Current lattice techniques are inefficient for calculating non-local operators
- ** Short distance: High precision calculation on the lattice ** Same effective hamiltonian as for $\Delta B = 2$ processes.
 - ** Comparison with experiment can exclude large regions of parameters in many models, constraining BSM building.

 E. Golowich, J. Hewett, S. Pakvasa and A. Petrov, PRD 76 (2007)
- # Latest SM calculations (quenched): L. Lellouch, C.-J. D Lin, PRD64 (2001); Huey-Wen Lin et al, PRD74 (2006) and latest BSM calculation (quenched): R. Gupta et al., PRD55 (1997)
- → A consistent unquenched determination of all matrix elements involved is needed: Work in progress: (goal: 10% errors) FNAL/MILC

- # Lattice QCD provides non-perturbative input for heavy flavor studies.
 - → allow to indirectly probe very short-distance.
 - * Test SM and BSM
 - * Learning about the flavour structure of the new physics.

- # Lattice QCD provides non-perturbative input for heavy flavor studies.
 - → allow to indirectly probe very short-distance.
 - * Test SM and BSM
 - * Learning about the flavour structure of the new physics.
- # Important progress in lattice calculations including sea quarks $(N_f = 2 + 1, 2 + 1 + 1)$
 - * Several quark formalisms giving (final and preliminary) precise results (few percent error) for decay constants 2-4%, B mixing parameters 6-7% (ξ is obtained with 3-4%), $|V_{ub}|$ ($\sim 9\%$), $|V_{cb}|$ ($2.6\% \rightarrow \sim 1.8\%$), $|V_{cd,cs}|$ ($10-11\% \rightarrow 3-4\%$)

- # Lattice QCD provides non-perturbative input for heavy flavor studies.
 - → allow to indirectly probe very short-distance.
 - * Test SM and BSM
 - * Learning about the flavour structure of the new physics.
- # Important progress in lattice calculations including sea quarks $(N_f = 2 + 1, 2 + 1 + 1)$
 - * Several quark formalisms giving (final and preliminary) precise results (few percent error) for decay constants 2-4%, B mixing parameters 6-7% (ξ is obtained with 3-4%), $|V_{ub}|$ ($\sim 9\%$), $|V_{cb}|$ ($2.6\% \rightarrow \sim 1.8\%$), $|V_{cd,cs}|$ ($10-11\% \rightarrow 3-4\%$)

Prospects for next few years

... and more $N_f=2+1$ and $N_f=2+1+1$ calculations expected in the near future \rightarrow important test

- ** comparing lattice calculations using different fermion formulations for all relevant quantities.
- ** more comparison against experiment.

.

- ** comparing lattice calculations using different fermion formulations for all relevant quantities.
- ** more comparison against experiment.
- * Study disagreements theory-experiment: neutral meson mixing, CKM matrix elements, leptonic decays, differences inclus.-exclus. ...

.

- ** comparing lattice calculations using different fermion formulations for all relevant quantities.
- ** more comparison against experiment.
- * Study disagreements theory-experiment: neutral meson mixing, CKM matrix elements, leptonic decays, differences inclus.-exclus. ...
- * Including dynamical charm: $N_f=2+1+1$, ETMC, MILC.
- * Relativistic description of b quarks.

Values of decay constants

Collaboration	$f_D(MeV)$	$f_{D_s}(MeV)$	f_{D_s}/f_D
HPQCD	212(4)**	247(2)	1.164(11)
FNAL/MILC	220(9)	261(9)	1.19(2)
ETMC $(N_f=2)$	197(9)	244(8)	1.24(3)
ETMC $(N_f = 2 + 1 + 1)*$	204(3)	251(3)	1.230(6)

^{*} error in ETMC $(N_f = 2 + 1 + 1)$ only statistical.

** update using new value of $r_1 = 0.3133(23)(3)$

Collaboration	$f_B(MeV)$	$f_{B_s}(MeV)$	f_{B_s}/f_B
HPQCD*	197(13)	240(16)	1.226(26)
FNAL/MILC	212(8)	256(8)	1.21(2)
ETMC $(N_f = 2)$	194(16)	235(12)	-

^{**} update using new value of $r_1 = 0.3133(23)(3)$

Other Heavy-light semileptonic decays

	Flavour neutral	Unstable	affordable now	in 5 years?
$B o \eta l u$	1/		possible but	
	V		expensive	
$B \to \eta' l \nu$	$\sqrt{}$	$\sqrt{}$		\checkmark
$B \to \rho l \nu$		$\sqrt{}$		$\sqrt{}$
$B \to \omega l \nu$		$\sqrt{}$		$\sqrt{}$
$B \to Kll$			$\sqrt{}$	
$B \to K^* l l$		$\sqrt{}$		$\sqrt{}$
$B \to \phi l l$	\checkmark	$\sqrt{}$		$\sqrt{}$
$B o K^* \gamma$				

R. Van de Water

Example of error budget: Decay constants

HPQCD PRL100:062002(2008)

	f_{π}	f_K	f_K/f_π	f_D	f_{D_s}	f_{D_s}/f_D
r_1 uncert.	1.4	1.1	0.3	1.4	1.0	0.4
a^2 extrap.	0.2	0.2	0.2	0.6	0.5	0.4
finite volume	0.8	0.4	0.4	0.3	0.1	0.3
$m_{u/s}$ extrap.	0.4	0.3	0.2	0.4	0.3	0.2
statistical	0.5	0.4	0.2	0.7	0.6	0.5
m_s evol.	0.1	0.1	0.1	0.3	0.3	0.3
m_d , QED, etc	0.0	0.0	0.0	0.1	0.0	0.1
Total(%)	1.7	1.3	0.6	1.8	1.3	0.9