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1.1. Introduction: Heavy Flavour Phenomenology

# Determination of fundamental parameters of the SM

* Quark masses: mc, mb

* CKM matrix elements: |Vcb|, |Vcd|, |Vcs|, |Vtd|, |Vts|

# Unveiling New Physics effects.

* Hints of discrepancies between SM expectations and some

flavour observables

** The like-sign dimuon charge asymmetry Absl ≡
N++

b −N−−b

N++
b +N−−b

(3.2σ)

DØ, Abazov et al, arXiv:1005.2757

** Bs mixing phase βs as extracted from experiment (SJ/ψφ) and

in the SM. (2− 3σ)

CDF/DØ∆Γs, βs CWG, July 2009; M. Bona et al, arXiv:0803.0659

** Leptonic decays of Ds and B+.



1.1. Introduction: Heavy Flavour Phenomenology

** UT fit: Global fit to the CKM unitarity triangle using

experimental and theoretical constraints.

2− 3σ tension in the CKM description

* Tension is between the three most precise constraints: the

K0 − K̄0 mixing parameter εK , the ratio of mass differences

∆MBs/∆MBd
describing B0 − B̄0 mixing and sin(2β).

Laiho, Van de Water and Lunghi, Phys.Rev.D81:034503(2010)

Constraints from ∆Md/∆Ms and εK limited by lattice errors for

ξ =
fBs

√
BBs

fBd

√
BBd

and |Vcb|.



1.1. Introduction: Heavy Flavour Phenomenology

E. Lunghi and A. Soni, arXiv:0912.0002: UT analysis without using

semileptonic decays

* |Vub| and |Vcb| inclusive and exclusive disagree by ≈ 2σ

→ eliminate the |Vcb| constraint from the analysis in favor of

fB0
s

√
B̂B0

s
or Br(B → τν)× f−2

Bd

* 1.8σ tension observed.



1.1. Introduction: Heavy Flavour Phenomenology

E. Lunghi and A. Soni, arXiv:0912.0002: UT analysis without using

semileptonic decays

* |Vub| and |Vcb| inclusive and exclusive disagree by ≈ 2σ

→ eliminate the |Vcb| constraint from the analysis in favor of

fB0
s

√
B̂B0

s
or Br(B → τν)× f−2

Bd

* 1.8σ tension observed.

# Constraining New Physics Models
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# Lattice QCD is a quantitative non-perturbative formulation of QCD

based only on first principles.

Goal: Precise calculations (∼ 5% error)



1.2. Introduction: Lattice QCD

# Lattice QCD is a quantitative non-perturbative formulation of QCD

based only on first principles.

Goal: Precise calculations (∼ 5% error)

# Precise lattice calculations for stable (or almost stable) hadron

masses and amplitudes with no more then one initial (final) state

hadron.

* Unquenched calculations: include vacuum polarization effects in

a realistic way (Nf = 2 + 1).

** Nf = 2 + 1.

** Nf = 2 + 1 + 1.

* Control over systematic errors: including chiral extrapolation,

discretization (continuum limit), renormalization, finite volume ...



1.3. Introduction: Heavy quark formulations

# Problem is discretization errors (' mQa, (mQa)2, · · ·) if mQa is large.

# Effective theories: Need to include multiple operators matched to

full QCD. B-physics only.

* Non-relativistic QCD (NRQCD): Discretized non-relativistic

expansion of QCD lagrangian.

** HPQCD: Improved through O(1/M2), O(a2) and leading

relativistic O(1/M3).

* Heavy Quark Effective Theory (HQET): Systematic expansion in

ΛQCD/mb

** ALPHA

* Static approximation: Leading order HQET.

static + relativ. (mc) simulations interpolation to mb

** INFN-TOV, ALPHA, ETMC



1.3. Introduction: Heavy quark formulations

# Relativistic formulations:

* Wilson-like fermions: Clover, twisted mass. Used for charm:

discretization errors are O((amc)2).

** ALPHA, ETMC.

* Fermilab-like fermions: Fermilab, RHQ. Relativistic clover action

with the Fermilab (HQET) interpretation. Used for charm and bottom.

** FNAL/MILC, PACS-CS, RBC/UKQCD.

* HISQ: Highly improved staggered fermions. No tree level a2 errors,

highly reduce O(a2αs) errors, no tree-level O((am)4) at first order in the

quark velocity v/c.

E. Follana et al, HPQCD coll., Phys.Rev.D75:054502 (2007)

→ accurate results for charm quarks (can use Hisq for a ≤ 0.15 fm)

** HPQCD

** Starting to be extended to the bottom region.



2. Decay constants: P → lν

W

P

l

ν

# Purely leptonic decays can be used to extract CKM matrix elements

Γ(Pab → lν)∝ f2
P |Vab|2

or testing SM/lattice predictions



2. Decay constants: P → lν

W

P

l

ν

# Purely leptonic decays can be used to extract CKM matrix elements

Γ(Pab → lν)∝ f2
P |Vab|2

or testing SM/lattice predictions

# Simple matrix element 〈0|q̄γµγ5h|P (p)〉 = ifP pµ → precise calculations



2.1 fD and fDs: test of lattice QCD

B(Dq → lν)︸ ︷︷ ︸
experiment

∝ |Vcq |2 f2
Dq︸︷︷︸

lattice

# Results (some preliminary) from several groups with Nf = 2 + 1

and Nf = 2 + 1 + 1

Collaboration Configurations Status Light Heavy a

HPQCD MILC Nf = 2 + 1 Final Hisq Hisq 5/3

FNAL/MILC MILC Nf = 2 + 1 Prelim. Asqtad Fermilab 3

ETMC ETMC Nf = 2 Final tm tm 3

ETMC ETMC Nf = 2 + 1 + 1 Prelim. OS OS 2

• HPQCD: PRL100:062002(2008), Lattice 2010.

• FNAL/MILC: talk by J. Simone, Lattice 2010

• ETMC (Nf = 2): JHEP 0907:043(2009)

• ETMC (Nf = 2 + 1 + 1): talk by C. Urbach at Lattice 2010



2.1 fD and fDs: test of lattice QCD
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# Theory and experiment are in a reasonable agreement.

fDs puzzle : 3.8σ difference (2007) → 1.7σ difference (2010) because of

* Change in experimental average (CLEO, BaBar)

* Update in the value of r1 used by HPQCD (about one σ in fD,Ds)
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preliminary

stast. error only

# Theory and experiment are in a reasonable agreement.

fDs puzzle : 3.8σ difference (2007) → 1.7σ difference (2010) because of

* Change in experimental average (CLEO, BaBar)

* Update in the value of r1 used by HPQCD (about one σ in fD,Ds)

# Errors at the 2-4% level.

# ∼ 1% error reachable in 5 years with: smaller a, more configurations,

more information per configuration, run nearer physical mu,d, including

sea charm ...



2.2 fB and fBs

# Extraction of CKM matrix elements: B(B− → τ−ν̄τ )︸ ︷︷ ︸
experiment

∝ |Vub|2 f2
B︸︷︷︸

lattice

(〈0|q̄γµγ5b|Bq(p)〉 = ifBq pµ)



2.2 fB and fBs

# Extraction of CKM matrix elements: B(B− → τ−ν̄τ )︸ ︷︷ ︸
experiment

∝ |Vub|2 f2
B︸︷︷︸

lattice

(〈0|q̄γµγ5b|Bq(p)〉 = ifBq pµ)

# Decay constants needed in the SM prediction for processes potentially

very sensitive to BSM effects: for example, fBS
for Bs → µ+µ−

# B− → τ−ν̄τ is a sensitive probe of effects from charged Higgs bosons.



2.2 fB and fBs

Collaboration Configurations Status Light Heavy a

HPQCD MILC Nf = 2 + 1 Final Asqtad NRQCD 2

FNAL/MILC MILC Nf = 2 + 1 Prelim. Asqtad Fermilab 3

ETMC ETMC Nf = 2 Final twisted mass twisted mass 2

• HPQCD: PRD80:014503 (2009)

• FNAL/MILC: talk by J. Simone, Lattice 2010

• ETMC (Nf = 2): JHEP 1004:049(2009)



2.2 fB and fBs
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B(B− → τ−ν) = (1.72+0.43
−0.42)

Rosner and Stone, arXiv:1002.1655

** HPQCD results updated using new value of r1 = 0.3133(23)(3)
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ETMC (Nf = 2)

preliminary

* experimental result obtained using

average

of inclusive and exclusive

|Vub| = (3.97± 0.55)× 10−3

and average of experimental

measurements (Babar, Belle)

B(B− → τ−ν) = (1.72+0.43
−0.42)

Rosner and Stone, arXiv:1002.1655

** HPQCD results updated using new value of r1 = 0.3133(23)(3)

# Theory and experiment are in a reasonable agreement (∼ 1.3σ).

* But taking only exclusive |Vub| → disagreement is ∼ 2.3σ

Need to clarify the difference between |V incl.
ub | and |V excl.

ub |

* Inclusive Vub varies depending upon theoretical framework, and is highly

sensitive to mb.



2.2 fB and fBs

# HPQCD Testing relativistic action for masses heavier than charm (no

HQET used at any step).

E. Follana, Lattice 2010

* Relativistic bottom (amb < 1) possible if a < 0.04 fm lattices

are generated (current values a ≥ 0.045 fm)

* Current status: Simulations at masses mc ≤ mh < mb and several

lattice spacings → fit heavy quark mass dependence (HQET)

including a corrections

0.15

0.2

0.25

0.3

0.35

f
H

s
(G

eV
)

2 4 6 8 10

Mηh
(GeV)

** Comparison of extrapolated

results with those using NRQCD

** No extrapolated results reported

yet



3. Semileptonic decays

P1 P2

W

l

ν

Vµ

x

d
dq2

Γ(P1 → P2lν) ∝ |Vab|2 fP1→P2
+ (q2)|2

〈P2|V µ|P1〉 = f+(q2)

[
pµ

P1
+ pµ

P2
−

m2
P1
−m2

P2
q2 qµ

]
+f0(q

2) =
m2

D
−m2

P

q2 qµ

q = pP2 − pP1

Issue: discretization errors that goes as (ap)n:

〈P1|Vµ|P2〉lat = 〈P1|Vµ|P2〉cont +O((ap1)n, (ap2)n)



3.1 B → πlν: Exclusive determination of |Vub|

Br(B → πlν) = |Vub|2
∫ q2max
0 dq2fB→π

+ (q2)2 × (known factors)

# Problem: Poor overlap in q2 between lattice and experiment

→ increases the total error
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Br(B → πlν) = |Vub|2
∫ q2max
0 dq2fB→π

+ (q2)2 × (known factors)

# Problem: Poor overlap in q2 between lattice and experiment

→ increases the total error

=⇒ Use model-independent parametrization to combine theoretical

and experimental data over full q2 region

* z-fit: Model-independent expression based on analyticity, unitarity, and

heavy quark symmetry to describe the shape of the form factor

Arnesen et al.; Becher & Hill; P. Ball; P. Mackenzie and R. Van de Water
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Br(B → πlν) = |Vub|2
∫ q2max
0 dq2fB→π

+ (q2)2 × (known factors)

# Problem: Poor overlap in q2 between lattice and experiment

→ increases the total error

=⇒ Use model-independent parametrization to combine theoretical

and experimental data over full q2 region

* z-fit: Model-independent expression based on analyticity, unitarity, and

heavy quark symmetry to describe the shape of the form factor

Arnesen et al.; Becher & Hill; P. Ball; P. Mackenzie and R. Van de Water
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simultaneous 4-parameter z-fit
Fermilab-MILC lattice data
BABAR data rescaled by |Vub| from z-fit

FNAL-MILC, PRD79:05407 (2009)

* Nf = 2 + 1 (2 values of a)

* b quarks: Fermilab action.

* Using BaBar exper. data

B. Aubert, PRL98:141801(2007)

|Vub| × 103 = 3.38± 0.36



3.1 B → πlν: Exclusive determination of |Vub|

# First unquenched calculation: E. Gulez et al [HPQCD], PRD73:074502(2006),

PRD75:119906(2006)

* Nf = 2 + 1 MILC configurations for two values of a

* Staggered Asqtad light quarks and NRQCD b quarks.

* Using HFAG 08 average for fB→π
+ (q2) (q2 > 16GeV 2)

|Vub| = (3.40± 0.20exp
+0.59
−0.39)× 10−3



3.1 B → πlν: Exclusive determination of |Vub|

# First unquenched calculation: E. Gulez et al [HPQCD], PRD73:074502(2006),

PRD75:119906(2006)

* Nf = 2 + 1 MILC configurations for two values of a

* Staggered Asqtad light quarks and NRQCD b quarks.

* Using HFAG 08 average for fB→π
+ (q2) (q2 > 16GeV 2)

|Vub| = (3.40± 0.20exp
+0.59
−0.39)× 10−3

* ∼ 2σ difference with inclusive determinations

|V incl.,average
ub | × 103 = 4.21± 0.25 Rosner and Stone, arXiv:1002.1655

** Discrepancy could be due to right handed currents → need

calculation of B → ρlν M. Neubert



3.2. B → D∗lν: Exclusive determination of |Vcb|

# |Vcb| normalizes the whole unitarity triangle.

# |Vcb| needed as an input in εK and rare kaon decays ( Br(K → πνν̄)).



3.2. B → D∗lν: Exclusive determination of |Vcb|

# |Vcb| normalizes the whole unitarity triangle.

# |Vcb| needed as an input in εK and rare kaon decays ( Br(K → πνν̄)).

# Unquenched Nf = 2 + 1 lattice determinations of |Vcb|:

Blind analysis by FNAL/MILC

* B → D∗lν rate at zero recoil ∝ |VcbhA(1)|: take shape from exper.

* Double ratio method: |hA(1)|2 =
〈D∗|c̄γjγ5b|B̄〉〈B̄|b̄γjγ5c|D∗〉
〈D∗|c̄γ4c|D∗〉〈B̄|b̄γ4b|B̄〉
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# |Vcb| normalizes the whole unitarity triangle.

# |Vcb| needed as an input in εK and rare kaon decays ( Br(K → πνν̄)).

# Unquenched Nf = 2 + 1 lattice determinations of |Vcb|:

Blind analysis by FNAL/MILC

* B → D∗lν rate at zero recoil ∝ |VcbhA(1)|: take shape from exper.

* Double ratio method: |hA(1)|2 =
〈D∗|c̄γjγ5b|B̄〉〈B̄|b̄γjγ5c|D∗〉
〈D∗|c̄γ4c|D∗〉〈B̄|b̄γ4b|B̄〉
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* J. Laiho et al, talk by A. Kronfeld

Lattice 2010

* Smaller (superfine) lattice spacing

added.

* Statistics quadrupled



3.2. B → D∗lν: Exclusive determination of |Vcb|

2008 result C. Bernard et al., Phys.Rev.D79:014506(2009)

hA(1) stats. gDD∗π ChPT disc. κb,c match. u0

0.921 ±0.013 ±0.008 ±0.008 ±0.014 ±0.006 ±0.003 ±0.004

→ |Vcb| × 103 = (38.9± 0.7exp ± 1.0LQCD) using latest HFAG, Kowalewski,

FPCP and C. Bernard et al., Phys.Rev.D79:014506(2009) (2.6% error)



3.2. B → D∗lν: Exclusive determination of |Vcb|

2008 result C. Bernard et al., Phys.Rev.D79:014506(2009)

hA(1) stats. gDD∗π ChPT disc. κb,c match. u0

0.921 ±0.013 ±0.008 ±0.008 ±0.014 ±0.006 ±0.003 ±0.004

→ |Vcb| × 103 = (38.9± 0.7exp ± 1.0LQCD) using latest HFAG, Kowalewski,

FPCP and C. Bernard et al., Phys.Rev.D79:014506(2009) (2.6% error)

New result: talk by A. Kronfeld Lattice 2010 preliminary (2010)

FF hA(1) stats. gDD∗π ChPT disc. κb,c match. u0

0.921 ±0.005 ±0.009 ±0.007 ±0.010 ±0.005 ±0.003 -

* Red numbers: still under study.

* Need to finish systematic error study and unblind: September 2010?.



3.3. D semileptonic decays

# CLEO-c, Besson et al PRD80 (2009) Aubin et al. PRL94(2005)

|Vcs|f+(0)D→K = 0.719(±0.8%± 0.7%) f+(0)D→K,latt : 11% error

|Vcd|f+(0)D→π = 0.150(±3%± 0.7%) f+(0)D→π,latt : 10% error

BaBar, Aubert et al PRD76 (2007)

|Vcs|f+(0)D→K = 0.717(±0.8%± 0.7%± 0.7%) (last error from B(D0 → K−π+))

* For D decays error in |Vcj | dominated by lattice errors
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3.3. D semileptonic decays

# CLEO-c, Besson et al PRD80 (2009) Aubin et al. PRL94(2005)

|Vcs|f+(0)D→K = 0.719(±0.8%± 0.7%) f+(0)D→K,latt : 11% error

|Vcd|f+(0)D→π = 0.150(±3%± 0.7%) f+(0)D→π,latt : 10% error

BaBar, Aubert et al PRD76 (2007)

|Vcs|f+(0)D→K = 0.717(±0.8%± 0.7%± 0.7%) (last error from B(D0 → K−π+))

* For D decays error in |Vcj | dominated by lattice errors

# Testing lattice QCD: shape of the form factors

→ use same method for other processes like B → πlν or B → Kll̄

# Correlated signals of NP to those in leptonic decays

# FNAL/MILC, and HPQCD PRL94:011601(2005) normalization agreed with

experiment and predicted shape of the form factors for D → K(π)



3.3. D semileptonic decays

D → πlν from FNAL/MILC, E.G., Lattice 2010 (preliminary)

# Nf = 2 + 1, two lattice spacings, MILC sea, Asqtad light valence, and

Fermilab charm valence.



3.3. D semileptonic decays

D → πlν from FNAL/MILC, E.G., Lattice 2010 (preliminary)

# Nf = 2 + 1, two lattice spacings, MILC sea, Asqtad light valence, and

Fermilab charm valence.

* Chiral+continuum extrapolation for χπ =
√

2Eπ
4πfπ
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5 ensembles of full QCD lattice data (statistical errors only)
CLEO-c, PRD (2009), arXiv:0906.2983

Consistency check between lattice and experiment for D -> π
f+(q2) rescaled by its value at q2 = 0.15 GeV2

Comparison of experiment

and MILC preliminary

results (normalized via

f+(q2)/f+(q2 = 0.15 GeV2))

Very good agreement

with experiment.

* Statistical errors around 5%.
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D → πlν from FNAL/MILC, E.G., Lattice 2010 (preliminary)

# Nf = 2 + 1, two lattice spacings, MILC sea, Asqtad light valence, and

Fermilab charm valence.

* Chiral+continuum extrapolation for χπ =
√
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4πfπ
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5 ensembles of full QCD lattice data (statistical errors only)
CLEO-c, PRD (2009), arXiv:0906.2983

Consistency check between lattice and experiment for D -> π
f+(q2) rescaled by its value at q2 = 0.15 GeV2

Comparison of experiment

and MILC preliminary

results (normalized via

f+(q2)/f+(q2 = 0.15 GeV2))

Very good agreement

with experiment.

* Statistical errors around 5%.

* Need include third lattice spacing, more valence quark masses, and

use z-expansion to combine with exper. data → expect 7− 8% error
(previous error was 11%). Same for D → Klν
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# Nf = 2 + 1, two lattice spacings, MILC sea and Hisq valence.

* Use PCVC to relate f0(q2) to three-point functions with a scalar

(versus vector) insertion.

qµ〈V cont.
µ 〉 = (mc −mq)〈Scont.〉 → f0(q2) =

mc−mq

m2
D−m2

π
〈S(q2)〉

f+(0) = f0(0) =
mc−mq

m2
D−m2

π
〈S〉

* Very precise determination of |Vcs|, but can not get the shape

of f+(q2). Only f0(q2).

* Modified z-expansion: includes a2 and light quark masses dependence

on the coefficients

Preliminary |Vcs| = 0.955(10)exp(27)LQCD Error at the 3% level

* H. Na, Lattice 2010 using average of CLEO-c PRD80(2009) and BaBar

PRD76(2007) + PDG B(D0 → K−π+): fD→K
+ (0)|Vcs| = 0.718(8)
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* Use double ratio methods → do not need renormalization factors.

* Use HMChPT to fit to the data an extrapolate to physical mπ,

parametrically includes O(a2) effects in the formulae
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in the full q2 range

Preliminary, only stats. errors: fD→π(0) = 0.66(6) and fD→K(0) = 0.76(4)



4. Neutral B-meson mixing

In the Standard

Model
B

0
B̄

0

W

W
H∆B=2

eff

∆Mq |theor. =
G2

FM
2
W

6π2 |V ∗
tqVtb|2ηB2 S0(xt)MBsf2

Bq
B̂Bq

** Non-perturbative input

8
3
f2
Bq

BBq (µ)M2
Bq

= 〈B̄0
q |O1|B0

q 〉(µ) with O1 ≡ [bi qi]V−A[bj qj ]V−A

* ∆Γ dominated by CKM-favoured b → cc̄s tree-level decays.
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** Non-perturbative input
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3
f2
Bq

BBq (µ)M2
Bq

= 〈B̄0
q |O1|B0

q 〉(µ) with O1 ≡ [bi qi]V−A[bj qj ]V−A

* ∆Γ dominated by CKM-favoured b → cc̄s tree-level decays.

# Specially interesting for phenomenology:

ξ =
fBs

√
BBs

fBd

√
BBd
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4. Neutral B-meson mixing

# Constraining NP models with ∆M and ∆Γ.

# In conjunction with experimental measurements . . .

HFAG 10 CDF (5.2fb−1)

∆Md|exp. = (0.507± 0.005)ps−1 ∆Ms|exp. = (17.79± 0.07)ps−1

HFAG 10 CDF (5.2fb−1)(
∆Γ
Γ

)
d

= 0.010± 0.037 ∆Γs = (0.075± 0.035± 0.01)ps−1

* CDF (5.2fb−1), talk by G. Giurgiu



4.1. Nf = 2 + 1 unquenched lattice calculations

of B0 mixing parameters

Collaboration Configurations Status Light Heavy

HPQCD MILC Final Asqtad NRQCD

FNAL/MILC MILC Preliminary Asqtad Fermilab

RBC/UKQCD RBC/UKQCD Exploratory domain wall static

RBC/UKQCD RBC/UKQCD Preliminary domain wall RHQ

* Two lattice spacings and extrapolation to the continuum except for

the exploratory study by RBC/UKQCD.

• HPQCD: E. Gámiz et al., Phys.Rev.D80:014503,2009

• Fermilab lattice/MILC: R.T. Evans et al, Pos(LAT09)052; C. Bouchard et

al., Lattice 2010 → it can also be used for c quarks.

• RBC/UKQCD exploratory: C. Albertus et al., arXiv:1001.2023

• RBC/UKQCD preliminary: O. Witzel et al, Lattice 2010 → also valid for c



4.1.1. Results: fBq

√
BBq

HPQCD, PRD80 (2009) 014503

Chiral+continuum extrapolations: NLO Staggered CHPT.
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* Using new value for the lattice scale r1 = 0.3133(23)(3).

fBs

√
B̂Bs = 276(6)(18)MeV fBd

√
B̂Bd

= 224(9)(12)MeV



4.1.2. Results: ξ =
fBs
√
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FNAL/MILC (preliminary)
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1.258(33)

1.205(50)

1.13(12)

RBC/UKQCD: No extrapolation

to the continuum

FNAL/MILC: No

renormalization included, but we

expect a large cancellation between

B0
s

and B0
d

renor. corrections.

HPQCD result =⇒
∣∣∣∣VtdVts

∣∣∣∣ = 0.214(1)(5)



4.1.3. Results: Summary of errors

fB
√

BB ξ

current 6-7% 3-4% (9% RBC/UKQCD)

2 years ∼ 4-5% ∼ 1.5-2% (3-4% RBC/UKQCD)

# Improvements: smaller lattice spacings, better statistics, more

accurate inputs (amb, ams, aml, a, ...), more efficient matching

methodology, better fitting and smearing techniques, ...

# Several high precision determinations of B0
s and B0

d mixing

parameters with different heavy and light formulations in two years.



4.1.4. Calculation of ∆Γd,s

# Only unquenched calculation by HPQCD, PRD76:011501(2007):

∆Γs = 0.10(3)ps−1 (∆Γs(CDF ) = (0.075± 0.035± 0.01)ps−1)

* Expect experimental improvements at LHCb
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# Only unquenched calculation by HPQCD, PRD76:011501(2007):

∆Γs = 0.10(3)ps−1 (∆Γs(CDF ) = (0.075± 0.035± 0.01)ps−1)

* Expect experimental improvements at LHCb

# Wrong-charge semileptonic asymmetry is proportional to

assl ∝
∆Γ

∆Ms
sin(φs)

where φs is the phase of NP and asl ≡ Γ(B̄s→µ+X)−Γ(Bs→µ−X)

Γ(B̄s→µ+X)+Γ(Bs→µ−X)
is related

to the dimuon asymmetry by some known factor (neglecting NP effects

in B0
d mixing)



4.2. B0 mixing beyond the SM

# Effects of heavy new particles seen in the form of effective operators

built with SM degrees of freedom

H∆F=2
eff =

5∑
i=1

CiQi +

3∑
i=1

C̃iQ̃i

** With Qi and Q̃i four-fermion operators
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# Effects of heavy new particles seen in the form of effective operators

built with SM degrees of freedom

H∆F=2
eff =

5∑
i=1

CiQi +

3∑
i=1

C̃iQ̃i

** With Qi and Q̃i four-fermion operators

• Ci, C̃i Wilson coeff. calculated for a particular BSM theory

• 〈F̄ 0|Qi|F 0〉 calculated on the lattice

# SM predictions + BSM contributions + experiment

→ constraints on BSM physics

# Same programme can be applied for extra operators

# FNAL/MILC: complete Nf = 2 + 1 analysis of ∆B = 2 matrix elements

underway C. Bouchard, Lattice 2010. HPQCD plans for a similar study.

Goal: errors< 10%.
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4.3. D0 mixing beyond the SM

# SM contribution of the order of experiment and dominated by

long-distance effects.

What can we calculate on the lattice?

× * Long distance: Current lattice techniques are inefficient for

calculating non-local operators√
* Short distance: High precision calculation on the lattice

** Same effective hamiltonian as for ∆B = 2 processes.

** Comparison with experiment can exclude large regions of

parameters in many models, constraining BSM building.

E. Golowich, J. Hewett, S. Pakvasa and A. Petrov, PRD 76 (2007)

# Latest SM calculations (quenched): L. Lellouch, C.-J. D Lin, PRD64 (2001);

Huey-Wen Lin et al, PRD74 (2006) and latest BSM calculation (quenched):

R. Gupta et al., PRD55 (1997)

→ A consistent unquenched determination of all matrix elements involved

is needed: Work in progress: (goal: 10% errors) FNAL/MILC
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5. Conclusions and outlook

# Lattice QCD provides non-perturbative input for heavy flavor studies.

→ allow to indirectly probe very short-distance.

* Test SM and BSM

* Learning about the flavour structure of the new physics.

# Important progress in lattice calculations including sea quarks

(Nf = 2 + 1, 2 + 1 + 1)

* Several quark formalisms giving (final and preliminary) precise results

(few percent error) for decay constants 2− 4%, B mixing

parameters 6− 7% (ξ is obtained with 3− 4%), |Vub| (∼ 9%),

|Vcb| (2.6%→ ∼ 1.8%), |Vcd,cs| (10− 11%→3− 4%)

# Prospects for next few years

... and more Nf = 2 + 1 and Nf = 2 + 1 + 1 calculations expected in

the near future → important test
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5. Conclusions and outlook

** comparing lattice calculations using different fermion

formulations for all relevant quantities.

** more comparison against experiment.

* Study disagreements theory-experiment: neutral meson mixing,

CKM matrix elements, leptonic decays, differences inclus.-exclus. ...

* Including dynamical charm: Nf = 2 + 1 + 1, ETMC, MILC.

* Relativistic description of b quarks.



×



Values of decay constants

Collaboration fD(MeV ) fDs (MeV ) fDs/fD

HPQCD 212(4)** 247(2) 1.164(11)

FNAL/MILC 220(9) 261(9) 1.19(2)

ETMC (Nf = 2) 197(9) 244(8) 1.24(3)

ETMC (Nf = 2 + 1 + 1)∗ 204(3) 251(3) 1.230(6)

* error in ETMC (Nf = 2 + 1 + 1) only statistical.

** update using new value of r1 = 0.3133(23)(3)

Collaboration fB(MeV ) fBs (MeV ) fBs/fB

HPQCD* 197(13) 240(16) 1.226(26)

FNAL/MILC 212(8) 256(8) 1.21(2)

ETMC (Nf = 2) 194(16) 235(12) -

** update using new value of r1 = 0.3133(23)(3)



Other Heavy-light semileptonic decays

Flavour neutral Unstable
affordable

now
in 5 years?

B → ηlν
√ possible but

expensive

B → η′lν
√ √ √

B → ρlν
√ √

B → ωlν
√ √ √

B → Kll
√

B → K∗ll
√ √

B → φll
√ √ √

B → K∗γ
√ √

R. Van de Water



Example of error budget: Decay constants

HPQCD PRL100:062002(2008)

fπ fK fK/fπ fD fDs fDs/fD

r1 uncert. 1.4 1.1 0.3 1.4 1.0 0.4

a2 extrap. 0.2 0.2 0.2 0.6 0.5 0.4

finite volume 0.8 0.4 0.4 0.3 0.1 0.3

mu/s extrap. 0.4 0.3 0.2 0.4 0.3 0.2

statistical 0.5 0.4 0.2 0.7 0.6 0.5

ms evol. 0.1 0.1 0.1 0.3 0.3 0.3

md, QED, etc 0.0 0.0 0.0 0.1 0.0 0.1

Total(%) 1.7 1.3 0.6 1.8 1.3 0.9


