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Introduction

Gauge/gravity dualities have been an important new
tool in extracting strong coupling physics.
The best understood examples of such dualities
involve relativistic quantum field theories.
Strongly coupled non-relativistic QFTs are common
place in condensed matter physics and elsewhere.
It is natural to wonder whether holography can be
used to obtain new results about such non-relativistic
strongly interacting systems.
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The non-relativistic conformal group

In non-relativistic physics the Poincaré group is replaced
by the Galilean group. It consist of

the temporal translation H, spatial translations P i ,
rotations Mij , Galilean boosts Ki and the mass
operator M.

The conformal extension adds to these generators

the non-relativistic scaling operator D and the
non-relativistic special conformal generator C.

The scaling symmetry acts as

t → λ2t , x i → λx i
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Schrödinger group

This is the maximal kinematical symmetry group of
the free Schrödinger equation [Niederer (1972)], hence
its name: Schrödinger group Sch(d).

Interacting systems that realize this symmetry include:

Non-relativistic particles interacting through an 1/r 2

potential.
Fermions at unitarity. (Fermions in three spatial
dimensions with interactions fine-tuned so that the
s-wave scattering saturates the unitarity bound).
This system has been realized in the lab using
trapped cold atoms [O’Hara et al (2002) ...] and has
created enormous interest.
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Holography for Schrödinger

Motivated by such applications [Son (2008)] and [K.
Balasubramanian, McGreevy (2008)] initiated a discussion of
holography for (d + 1) dimensional spacetimes with
metric,

ds2 = −b2du2

r 4 +
2dudv + dx idx i + dr 2

r 2 ,

When b = 0 this is the AdSd+1 metric.
This metric realizes geometrically the Schrödinger
group in (d − 1) dimensions.
In order for the mass operator M to have discrete
eigenvalue lightcone coordinate v must be
compactified.
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Bulk system

This metric solves the field equations for

gravity coupled to massive vectors
topologically massive gravity with µ = 3

In the latter case the solution is called "null warped AdS3"
and it was conjectured to be dual to a 2d CFT with certain
(cL, cR) [Anninos et al (2008)].

→ This is a rather different proposal for the physics of
the solution.
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The purpose of our work is to understand how
holography works for such spacetimes.
Based on
M. Guica, KS, M. Taylor, B. van Rees
Holography for Schrödinger backgrounds,
to appear
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The issues

These spacetimes are not asymptotically AdS and as
such the usual set up is not automatically applicable.

Even basic issues such as

is the dual theory a local QFT?
what is the correspondence between bulk fields and
dual operators?

are not understood.
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Results

To avoid the complications of a null compact direction, we
consider the spacetime with v non-compact.
The main result is then

The dual theory is a deformation of a d-dimensional
CFT.
The deformation is irrelevant w.r.t. relativistic
conformal group.
The deformation is exactly marginal w.r.t.
non-relativistic conformal group.
The theory is non-local in the v direction.
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The small b limit
In the small b limit the geometry is a small perturbation of
AdS and standard AdS/CFT applies.

Massive vector model:

SCFT → SCFT +

∫
ddx biXi

→ Xi has dimension (d + 1).
→ bi is a null vector with only non-zero component

bv = b.
Topologically massive gravity:

SCFT → SCFT +

∫
d2x bijXij

→ Xij has dimension (3, 1).
→ bij is a null tensor with only non-zero component

bvv = −b2.
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Schrödinger invariance

In both cases the non-relativistic scaling dimension of the
deformation is

∆s = d

We now need to understand what happens at finite b.
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Finite b

Bulk perspective:
The perturbation that solves the linearized equation
around AdS, it also automatically solves the
non-linear equations.

→ The theory is Schrödinger invariant for any b.
Boundary QFT perspective:

We analyzed this question using conformal
perturbation theory.

→ The deforming operator is exactly marginal.
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Exact marginality

To explain this computation we need a few facts about
theories with Schrödinger invariance:

Operators are labeled by their non-relativistic scaling
dimension, ∆s and their charge under M, the mass
operator.
In our context the mass operator is the lightcone
momentum kv .
Operators with different kv are considered as
independent operators.
In our case, the deforming operator has zero
lightcone momentum, kv = 0.
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Exact marginality

To prove that the operator is exactly marginal it suffices to
show that its 2-point function does not receive any
corrections when we turn on b.

〈Xv(kv=0, u1, x i
1)Xv(kv=0, u2, x i

2)〉b =

〈Xv(kv=0, u1, x i
1)Xv(kv=0, u2, x i

2)〉b=0

This can be studied using conformal perturbation theory.

Kostas Skenderis Holography for Schrödinger



Conformal perturbation theory
One can show that

〈Xv(kv)
n∏

i=1

bµ · Xµ(kv=0)Xv(−kv)〉CFT =

〈Xv(kv)Xv(−kv)〉CFT (bvkv)
nf (log kv , ...)

where f (log kv , ...) is a dimensionless function that
depends at most polynomially on log kv .

Taking the limit kv → 0, establishes that Xv(kv=0) is
exactly marginal.
The dimensions of operators with kv 6= 0 receive
corrections,

∆s = ∆s(b = 0) +
∑
n>0

cn(bkv)
n
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Summary

We started with a relativistic CFT and deformed it by
an irrelevant operator which is however marginal from
the perspective of the Schrödinger group.
We showed that the deformation is exactly marginal
and the deformation takes the theory from a
relativistic fixed point to a non-relativistic one.
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Summary

The question is then to understand the spectrum of
operators in the new fixed point.
We have seen that in the non-relativistic dimension
∆s of operators with kv 6= 0 changes as we go from
one fixed point to the other.
We will next analyze this question from the bulk
perspective.
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Probe scalar

Let us start by analyzing a probe scalar field in the
Schrödinger background,

S = −1
2

∫
d3x

√
−G

(
∂µΦ∂µΦ + m2Φ2

)
.

The field equations are

Φ̈ + 2Φ̇ + ζΦ− (m2 − b2∂2
v )Φ = 0

The asymptotics of the solution are

Φ = e(∆s−2)r
(
φ(0)(k) + . . . + e−(2∆s−2)rφ(2∆s−2)(k) + . . .

)
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Probe scalar

The dual operator has dimension

∆s = 1 +
√

1 + m2 + b2k2
v

For small b it takes the form we found earlier using
conformal perturbation theory

∆s = ∆s(b = 0) +
∑

cn(bkv)
n

where ∆s(b = 0) = 1 +
√

1 + m2 is the standard
holographic formula for the dimension of a scalar
operator.
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Correlation functions

To compute correlation functions we need to compute
the on-shell value of the action.
This suffers from the infinite volume divergences.
Adapting holographic renormalization we find that we
need counterterms

Sct,∆s.3 = −1
2

∫
d2k

√
−ζ

(
(∆s − 2)Φ2 +

k2
ζ Φ2

2∆s − 4

)
When b = 0 these reduce to the counterterms for the
scalar field in AdS.
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Non-locality

Sct,∆s.3 = −1
2

∫
d2k

√
−ζ

(
(∆s − 2)Φ2 +

k2
ζ Φ2

2∆s − 4

)

Because ∆s depends on kv , the counterterms are not
polynomials in kv .
The theory is non-local in the v direction.
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2-point function

Having determined the counterterms, the 2-point
function can now extracted from an exact solution of
the field equations.

〈O∆s(u, kv)O∆s(0,−kv)〉 = c∆s,kv δ∆,∆su
−∆s ,

where c∆s,kv is a (specific) normalization factor.
This is precisely of the expected form for a 2-point
function of a Schrödinger invariant theory [Henkel
(1993)].
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Gravitational sector

We now turn to the gravitational sector and discuss the
solutions to the linearized equations around the
background.

Both models (massive vector and TMG) admit two
distinct sets of solutions to the linearized equations.
The ‘T’ solutions are associated with the dual stress
energy tensor,
The ‘X’ solutions are associated with the dual
deforming operator.
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‘X’ solutions: TMG

The mode satisfies a hypergeometric equation.
The dimension of the dual operator is

∆s(Xvv) = 1 +
√

1 + b2k2
v

This has the correct limit as b → 0.
The linearized solution is more singular than the
Schrödinger background. This is due to the fact that
the operators with kv 6= 0 are irrelevant.
The 2-point function takes the expected form.
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‘X’ solutions: Massive vector

The mode satisfies a forth order equation.
The dimensions of the dual operators are

∆s(Xv) = 1 +
√

1 + b2k2
v ; ∆s(Xu) = 1 +

√
9 + b2k2

v

This has the correct limit as b → 0.
The linearized solution is more singular than the
Schrödinger background. This is due to the fact that
the operators with kv 6= 0 are irrelevant.
The 2-point function takes the expected form.
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‘T’ solutions

The metric perturbation takes the form:

hT
uu =

1
r 2 h(−2)uu + h̃(0)uu log(r 2) + h(0)uu + r 2h(2)uu

hT
uv =

1
r 2 h(−2)uv + h̃(0)uv log(r 2) + h(0)uv + r 2h(2)uv

hT
vv = h(0)vv + r 2h(2)vv ,

These modes at b = 0 reduce to the modes that
couple to the energy momentum tensor, Tij .
The solution is more singular than the Schrödinger
background. This is related with the fact that
∆s(Tuu) = 4 and thus this operator is irrelevant (from
the perspective of Schrödinger).
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Stress energy tensor

There are subtleties in understanding this sector.
In a non-relativistic theory the tensor that contains
the conserved energy and momentum is not
symmetric and therefore cannot couple to any metric
mode. This tensor couples instead to the vielbein.
Still in progress ...
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Conclusions

We have argued that the dual to the Schrödinger
backgrounds is

a deformation of a d-dimensional CFT.
The deformation is irrelevant w.r.t. relativistic
conformal group.
The deformation is exactly marginal w.r.t.
non-relativistic conformal group.
The theory is non-local in the v direction.
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Null dipole theory

It was argued in [Maldacena et al (2008)] using TsT
transformations that the massive vector theory in d = 4 is
dual to the null dipole theory, a non-local deformation of
N = 4 SYM.
In the null dipole theory, the ordinary product is replaced
by a non-commutative product that depends on a null
vector [Ganor et al (2000)]. Expressed in terms of ordinary
products the null dipole theory contains terms that

irrelevant from the relativistic CFT point of view
marginal from the Schrödinger perspective

→ This is in exact agreement with our findings.
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Outlook

Very little is currently known about the null dipole
theories.

Is the structure of divergences the same as what we
found in gravity?
Does the dipole theory resum the series in b to
produce the surd?

Understand better the stress energy sector.
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