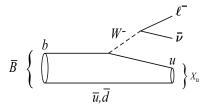
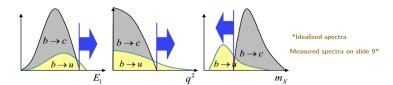
Introduction Event selection Systematic uncertainties Extraction of $|V_{ub}|$ Summary Additional material



Measurements of Partial Branching Fractions for $\bar{B} \to X_u \ell \bar{\nu}$ and the Determination of $|V_{ub}|$

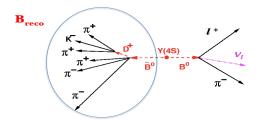
35th International Conference on High Energy Physics - Paris $22^{nd} - 28^{th} \text{ July 2010}$

Introduction


- **0** CKM matrix element $|V_{ub}|$ is a fundamental parameter of the SM
 - The measurement uses semileptonic decays, tree-level processes largely free of new physics which can be used to test SM predictions of CP violation
- **2** Make an exclusive or inclusive $\mathcal{B}(\bar{B} \to X_u \ell \bar{\nu})$ measurement
 - Sensitive to different selection criteria, different backgrounds, different QCD calculations to extract |V_{ub}|
 - Well known tension between measurements of |V_{ub}| from exclusive and inclusive methods

⑤ For inclusive measurements the main experimental challenge is separating the rare $\bar{B} \to X_u \ell \bar{\nu}$ signal from the dominant $\bar{B} \to X_c \ell \bar{\nu}$ background $(B_{b \to c}/B_{b \to u} \simeq 50)$

 $\begin{array}{c} \textbf{Introduction} \\ \textbf{Event selection} \\ \textbf{Systematic uncertainties} \\ \textbf{Extraction of } |V_{ub}| \\ \textbf{Summary} \\ \textbf{Additional materia} \end{array}$


- Forced to select regions of phase space where charm background is suppressed and measure a partial branching fraction, $\Delta \mathcal{B}(\bar{B} \to X_u \ell \bar{\nu})$
- **6** This technique leaves us sensitive to model dependent uncertainties when calculating $|V_{ub}|$ increasing the theoretical uncertainty
- **6** Can use the lepton momentum (p_{ℓ}^*) , the hadronic invariant mass (M_X) , the leptonic invariant mass squared (q^2) , $P_+ = E_X |\vec{P}_X|^{-1}$ as discriminating variables (or various 2-d combinations)

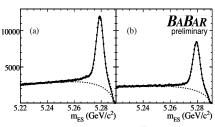
 $^{^{1}}E_{X}$ and \vec{P}_{X} are the energy and momentum of the hadronic system X in the B-meson rest frame

The $B_{\rm reco}$ selection

- 1 This analysis is an update of Phys. Rev. Lett. 100 (2008) 171802
 - Use same $B_{\rm reco}$ selection, more kinematic cuts etc.
 - ullet Use full BABAR data set of 467 million $\Upsilon(4S) o B \overline{B}$ events
- **Q** Tag $B\bar{B}$ event using a full reconstruction one of the B mesons ($B_{\rm reco}$)
 - Use hadronic modes of the type $B_{
 m reco} o ar{D}^{(*)} Y^{\pm}$ ($Y^{\pm} = \pi/K$) Over 1000 modes used

Pros: Low backgrounds, good ν_ℓ resolution. Momentum, charge, and flavour for $B_{\rm recoil}$ well determined

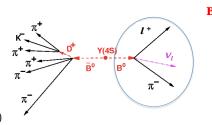
Cons: Low statistics (reconstruction efficiency: 0.3% for $B^0\overline{B}^0$, and 0.5% for B^+B^-)

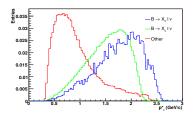

§ The signal and background for the $B_{\rm reco}$ selection is determined from a fit to data of the $m_{\rm ES}$ distribution

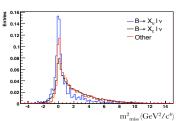
$$m_{\rm ES} = \sqrt{s/4 - \vec{p}_B^2} \tag{1}$$

 \sqrt{s} is the total energy of the $\Upsilon(4S)$, and p_B is the momentum of the $B_{\rm reco}$ candidate. Both in the $\Upsilon(4S)$ rest-frame.

Maximum likelihood fit with 2 PDFs:

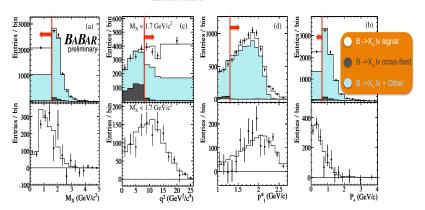

- Modified Crystal Ball function for the signal
- Argus function for the sum of the combinatorial and continuum background (e⁺e⁻ → uū, dd, ss̄, cc̄)


Fit of $m_{\rm ES}$ distribution to $\bar B\to X\ell\bar\nu$ data events for (a) B^\pm , and (b) B^0


The B_{recoil} selection

- **⑤** Select a lepton (e or μ) from the other B with momentum greater than 1.0 GeV/c in the B_{recoil} rest frame
 - Reconstruct the neutrino from the missing momentum in the event
 - Remaining particles in the event associated to the hadronic X system
- Select 3 samples of semileptonic decay:
 - Inclusive $\overline{B} \to X \ell \overline{\nu}$ (for normalization)
 - $\overline{B} \to X_u \ell \overline{\nu}$ signal enhanced selection
 - $\overline{B} \to X_u \ell \overline{\nu}$ signal depleted selection (for data/MC studies)

(1) Semileptonic selection	At least one lepton		
	$ ho_\ell^* > 1.0{ m GeV}/c$		
(2) $\overline{B} \to X_u \ell \bar{\nu}$ signal	Only one lepton		
enhanced selection	$m^2_{miss} < 0.5\mathrm{GeV}^2/c^4$		
	(Charge) $Q_{ m B_{ m reco}} + Q_{ m B_{ m recoil}} = 0$		
	$\mathit{Q}_{B_{ ext{recoil}}}\mathit{Q}_{\ell} > 0$ (only for B^{\pm})		
	Veto events with partially reconstructed $D^*\ell^\mpar u$		
	Veto events with kaons in the $B_{ m recoil}$		
(3) $\overline{B} \to X_u \ell \overline{\nu}$ signal	Selection (2) without kaon veto,		
depleted selection	and partial $D^*\ell^\mpar u$ veto		


Extraction of signal yields

- We study the distributions in the following regions of phase space:
 - $M_X < 1.55 \,\mathrm{GeV}/c^2$,
 - (M_X, q^2) , $p_\ell^* > 1.0$ GeV/c 2-d full phase space fit,
 - $M_X < 1.70 \, {\rm GeV}/c^2$ (a) [reference to plots on slide 9],
 - $P_+ < 0.66 \, \text{GeV/} c$ (b),
 - $M_X < 1.70 \,\mathrm{GeV}/c^2$, $q^2 > 8.0 \,\mathrm{Gev}^2/c^4$ 2-d fit (c),
 - $p_{\ell}^* > 1.0 2.4~{
 m GeV}/c$ (d) Choose optimal cut value at 1.3 ${
 m GeV}$
- **②** The distribution for each kinematic variable is fitted with a χ^2 minimization technique to extract the signal yield (perform $m_{\rm ES}$ fits in each bin of the kinematic variable)
- **§** For regions dominated by $\overline{B} \to X_c \ell \overline{\nu}$ (high M_X , low p_ℓ^*) we re-weight the relative contribution from $X_c = D_0^*, D_2^*, D_1, D_1'$
 - · Fit quality improves in these regions
 - Small effect on extracted signal yield

Introduction
Event selection
Systematic uncertainties
Extraction of $|V_{ub}|$ Summary
Additional material

The B_{TeCO} selection The $B_{\mathrm{TeCO}|1}$ selection Extraction of signal yields Results for $\Delta\mathcal{B}(\bar{B} \to X_{U}\ell\bar{\nu})$

- **③** 'Other' bkg includes: Secondary leptonic decays from D^* , or τ . Leptons from $J/\psi \rightarrow \ell\ell$ decays. Fake leptons (mis-identified hadrons).
- **§** Upper row: Measured M_X , q^2 with $M_X < 1.7 \text{ GeV}/c^2$, P_+ , and p_ℓ^*
- **6** Lower row: Final $\overline{B} \to X_u \ell \overline{\nu}$ sample after background subtraction (re-binned to show shape of the distribution)

The B_{TeCO} selection The B_{TeCOil} selection Extraction of signal yields Results for $\Delta \mathcal{B}(\overline{\mathcal{B}} \to X_{\mathcal{U}} \ell \bar{\nu})$

Results for $\Delta \mathcal{B}(\overline{B} \to X_u \ell \bar{\nu})$

	Signal yield	$\Delta \mathcal{B}(\overline{B} o X_u \ell \overline{ u}) \ (10^{-3})$
$M_X < 1.55$	$1033 \pm 73_{\it stat}$	$1.08 \pm 0.08_{stat} \pm 0.06_{sys}$
$M_X < 1.70$	$1089 \pm 82_{\textit{stat}}$	$1.15 \pm 0.10_{stat} \pm 0.08_{sys}$
$P_{+} < 0.66$	$902\pm80_{\it stat}$	$0.98 \pm 0.09_{stat} \pm 0.08_{sys}$
$M_X < 1.70 \; { m and} \; q^2 > 8$	$665 \pm 53_{\it stat}$	$0.68 \pm 0.06_{stat} \pm 0.04_{sys}$
$(M_X,q^2), \; p_\ell^* > 1.0$	$1441 \pm 102_{\textit{stat}}$	$1.80 \pm 0.13_{stat} \pm 0.15_{sys}$
$ ho_\ell^* > 1.0$	$1462 \pm 137_{\textit{stat}}$	$1.76 \pm 0.16_{stat} \pm 0.18_{sys}$
$p_{\ell}^* > 1.3$	$1326 \pm 118_{\textit{stat}}$	$1.50 \pm 0.13_{stat} \pm 0.14_{sys}$

- We measure the ratio $\Delta R_{\mathrm{u/sl}} = \frac{\Delta \mathcal{B}(\bar{B} \to X \ell \bar{\nu})}{\mathcal{B}(\bar{B} \to X \ell \bar{\nu})}$ to reduce systematics
 - Multiply $R_{
 m u/sl}$ by $(10.66\pm0.15)\%$ to obtain $\Delta {\cal B}(\overline B o X_u\ellar
 u)$
- 8 $M_X < 1.55 \text{ GeV}/c^2$ gives the lowest experimental error at 9%
- **9** Good agreement between the two results for $p_{\ell}^* > 1 \,\mathrm{GeV}/c$ and full phase space (M_X, q^2) fits.

Systematic uncertainties

- Since we measure a ratio of BFs many systematics are reduced (lepton ID etc)
- The statistical and systematic errors are comparable in size, and differ for different selected samples (see slide 24 for percentage breakdown of experimental errors)
- **We evaluate systematics concerning:** tracking, neutrals, particle ID/ mis-ID, fitting technique, $\overline{B} \to X_c \ell \overline{\nu}$ knowledge, $\overline{B} \to X_u \ell \overline{\nu}$ knowledge...

	$M_X < 1.55$	$M_X < 1.7$	$P_{+} < 0.66$	$M_X < 1.7$		$p_\ell^* > 1.3$
				$q^2 > 8$	$ ho_\ell^*>1$	
Stat. (%)	7.1	8.9	8.9	8.0	7.1	8.9
Syst. (%)	5.2	6.3	8.1	6.2	8.1	9.1
Tot. (%)	8.9	11.0	12.1	10.3	10.8	12.7

Experimental uncertainties on $\Delta \mathcal{B}(\overline{B} \to X \ell \overline{\nu})$ (lowest for $M_X < 1.55$)

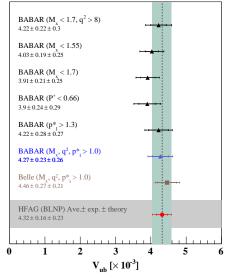
Extraction of $|V_{ub}|$ for different samples

lacktriangledown No preferred method to extract $|V_{ub}|$ - Use all calculations and compare final results

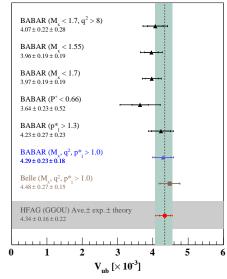
 BLNP:
 http://arxiv.org/pdf/hep-ph/0504071v3
 GGOU:
 http://arxiv.org/pdf/0707.2493v2

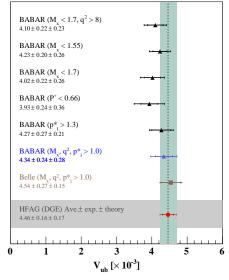
 DGE:
 http://arxiv.org/pdf/hep-ph/0509360v2
 ADFR:
 http://arxiv.org/pdf/0809.4860v1

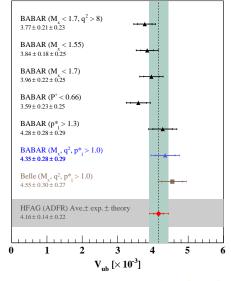
With BLNP, DGE, and GGOU we have the following relation:


$$|V_{ub}| = \sqrt{\frac{\Delta \mathcal{B}(\bar{B} \to X_u \ell \bar{\nu})}{\tau_B \cdot \Delta_{theory}}} \tag{2}$$

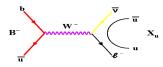
 $au_B=1.573 imes 10^{-12}$ s, and Δ_{theory} (ps^{-1}) is provided by authors of the particular calculation


③ Propagate the theoretical uncertainty from Δ_{theory} onto $|V_{ub}|$ (as assessed by the authors)


- HFAG Average does not take into account these preliminary results from BABAR
- Results for BLNP, GGOU, DGE, ADFR


- HFAG Average does not take into account these preliminary results from BABAR
- Results for BLNP, GGOU, DGE, ADFR

- HFAG Average does not take into account these preliminary results from BABAR
- Results for BLNP, GGOU, DGE, ADFR



- HFAG Average does not take into account these preliminary results from BABAR
- 6 Results for BLNP, GGOU, DGE, ADFR

Limits on Weak Annihilation effects

- Contributions from non-tree level processes affect the extraction of $|V_{ub}|$
- Use BFs for B⁰ and B⁺ to set a limit on the size of the Weak Annihilation (WA) in B⁺ decays

$$R^{+/0} = \frac{\Delta \Gamma^{+}}{\Delta \Gamma^{0}} = \frac{\tau^{0}}{\tau^{+}} \frac{\Delta \mathcal{B}(B^{+} \to X_{u} \ell \nu)}{\Delta \mathcal{B}(B^{0} \to X_{u} \ell \nu)}$$
(3)

where $au^+/ au^0=1.071\pm0.009$ (the ratio of the lifetimes for B^+ and B^0)

	$R^{+/0} - 1$	C.L. (90%)
$M_X \le 1.70, \ q^2 \ge 8$	$0.042{\pm}0.066{\pm}0.009$	$-0.07 \le \gamma_{W\!A}/\Gamma \le 0.15$
$M_X \le 1.55$	$-0.020\pm0.066\pm0.003$	$-0.13 \le \gamma_{WA}/\Gamma \le 0.09$
$M_X \le 1.70$	$0.071{\pm}0.117{\pm}0.011$	$-0.12 \le \gamma_{WA}/\Gamma \le 0.26$
$(M_X, q^2) p_\ell^* > 1.0$	$0.109{\pm}0.157{\pm}0.019$	$-0.15 \le \gamma_{W\!A}/\Gamma \le 0.37$

Summary

- We present preliminary results of $\Delta \mathcal{B}(\overline{B} \to X_{\nu} \ell \overline{\nu})$ using different phase space regions and different kinematic variables based on the $B_{\rm reco}$ sample (including p_{ℓ}^*)
- **②** Use partial branching ratios of B^0 and B^\pm to set a limit on the size of the WA at < 9% at 90% C.L.
- **Quote the** $|V_{ub}|$ value using the most inclusive measurement $(M_X-q^2 \text{ with } p_\ell^*>1.0)$ Has the smallest overall uncertainty on $|V_{ub}|$
 - The arithmetic average over the different theoretical calculations gives $|V_{ub}|=(4.31\pm0.35)\times10^{-3}$ (8% uncertainty)
 - Result consistent with earlier BABAR measurement, and in good agreement with Belle multivariate analysis

Introduction
Event selection
Systematic uncertainties
Extraction of $|V_{ub}|$ Summary
Additional material

Limits on Weak Annihilation effects

Thank you

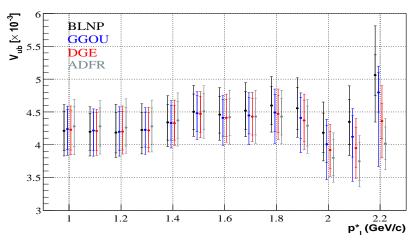
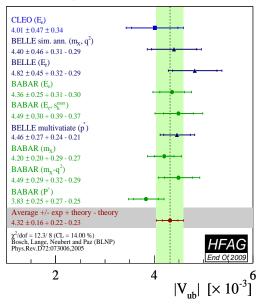
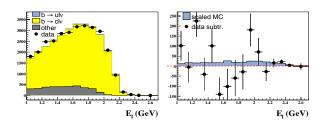




Figure: Results of $|V_{ub}|$ from all theoretical schemes for p_ℓ^* . Inner error bar corresponds to the experimental error, Outer error bar corresponds to the total error.

$B \to D^{**} \ell \nu$ re-weighting

- Perform a three-parameter fit on the signal depleted sample
- **2** Calculate ratio $(R^{D^{**}})$ of scaling factors for:
 - $B \to D^{**}\ell\nu/(\bar{B} \to X_c\ell\bar{\nu} + Other)$ GREY/YELLOW
- § Fix the $B \to D^{**}\ell\nu$ component to this ratio in all subsequent fits

 $\begin{array}{c} \text{Introduction} \\ \text{Event selection} \\ \text{Systematic uncertainties} \\ \text{Extraction of } |V_{ub}| \\ \text{Summary} \\ \text{Additional material} \end{array}$

Table: Table of statistical and theoretical correlations. Boldface refers to correlations on $|V_{ub}|$ measurements. Non-boldface refers to correlations of partial branching fractions. In the latter case, theoretical correlations have been included.

Analysis	$M_{\chi} < 1.55$	$M_{X} < 1.70$	$P_{+} < 0.66$	M_{χ} < 1.70,	(M_X, q^2)	$p_{\ell}^* > 1.3$
				$q^2 > 8$	$p_{\ell}^{*} > 1.0$	
$M_X < 1.55$	1	0.77	0.74	0.50	0.72	0.57
$M_X^2 < 1.70$	0.81	1	0.86	0.55	0.94	0.73
$P_{+} < 0.66$	0.69	0.81	1	0.46	0.78	0.61
$M_X < 1.70, q^2 >$	8 0.40	0.46	0.38	1	0.52	0.46
$(M_X, q^2), p_{\ell}^* >$	1 0.58	0.88	0.67	0.34	1	0.74
$p_{\ell}^{*} > 1.3$	0.53	0.72	0.58	0.40	0.72	1

Introduction Event selection Systematic uncertainties Extraction of $|V_{ub}|$ Summary Additional material

Source				$M_X < 1.70 \text{GeV}/c$			$p_{\ell}^* > 1.3$		
$\sigma(\Delta \mathcal{B}(B \to X_u \ell \nu))$	GeV/c^2	GeV/c^2	GeV	$q^2 > 8 \text{GeV}^2/\text{c}^4$	$p_\ell^* > 1.0 \mathrm{GeV}/c$	GeV/c	GeV/c		
Statistical error	7.1	8.9	8.9	8.0	7.1	9.4	8.9		
MC statistics	1.3	1.3	1.3	1.6	1.1	1.1	1.2		
Detector-related:									
Tracking efficiency	0.4	1.0	1.1	1.7	0.7	1.2	0.1		
Neutral efficiency	1.3	2.1	4.0	0.7	1.0	0.9	0.9		
π^0 efficiency	1.2	0.9	1.1	0.9	0.9	2.9	1.1		
PID eff. & misID	1.9	2.4	3.3	2.9	2.3	2.9	2.2		
K_L	0.9	1.3	1.1	2.1	1.6	1.3	0.6		
Fit	Fit related: (tbu)								
m_{ES} fit parameters	2.0	2.7	1.9	2.6	1.9	2.0	2.5		
combinatorial backg.	1.8	1.8	2.6	1.8	1.0	2.1	0.5		
	nal knowledg								
SF parameters	2.4 -1.6	1.8 -0.9	0.6 -1.8	0.6 -0.9	6.0 -4.9	5.8 -7.1	7.1 -6.1		
SF form	1.2	1.6	2.6	1.2	1.5	1.1	1.1		
Exclusive $B \to X_u \ell \nu$	0.6	1.3	1.6	0.7	1.9	5.3	3.4		
Gluon splitting	1.2	1.6	1.1	1.0	2.7	3.1	2.4		
Backg	Background knowledge:								
K_S veto	0.8	1.4	1.7	2.1	1.2	1.3	0.3		
B SL branching ratio	0.9	1.4	1.5	1.4	1.0	0.8	0.7		
D decays	1.1	0.6	1.1	0.6	1.1	1.6	1.5		
$B \rightarrow D\ell\nu$ form factor	0.5	0.5	1.3	0.4	0.4	0.1	0.2		
$B \to D^* \ell \nu$ form factor	0.7	0.7	0.9	0.7	0.7	0.7	0.7		
$B \rightarrow D^{**}\ell\nu$ form factor	0.8	0.9	1.3	0.4	0.9	1.0	0.3		
$B \to D^{**}$ reweight	0.4	1.0	1.1	0.7	1.6	0.1	1.2		
Total systematics:	5.3 -5.0	6.4 -6.2	8.0 -8.1	6.2 -6.2	8.5 -7.7	10.5 -11.2	9.4 -8.7		
Total error:	9.0 -8.8	11.0 -10.9	12.0 -12.1	10.2 -10.3	11.1 -10.5	14.1 -14.6	12.9 -12.4		

