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Stable reduction reduction methods will
be important in the evaluation of high-
order perturbative diagrams appearing in
QCD and mixed QCD-electroweak radiative
corrections at the LHC. We describe
differential reduction techniques in the
hypergeometric function representation of
Feynman diagrams and present some
representative examples.



HYPERGEOMETRIC FUNCTION APPROACH

Regge proposed (about 45 years ago) that Feynman
diagrams could be represented in terms of
nypergeometric functions.

This proposal was based on a study of the
singularities of Feynman diagrams as a function
complex momenta (Landau singularities). Matching
the of the HG function to the diagram would
determine the appropriate representation.

Much work has been done on finding the
representation of various diagrams in terms of HG
functions, and finding recursion relations among them
which can be the basis for a reduction algorithm.




HYPERGEOMETRIC SERIES

A Laurent series In r variables
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is hypergeometric if for each I, the ratio C(m+&)/C (M)
IS a rational function in the multi-index m with
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This type of HG series called a Horn series.




HORN-TYPE HYPERGEOMETRIC FUNCTIONS

In general, starting with the Feynman
parameterization, any Feynman diagram
containing arbitrary powers of propagators of the
form (k? — m2)Jcan be written in terms of a
multiple Mellin-Barnes integral leading to a linear

combination Z C& Xlal 1) xf‘r CD(A; |§; X)

of Horn-type hypergeometric functions, where X;
are rational functions of masses and momenta 0
depends on the powers of propagators and
dimension of space-time, and C’s are ratios of I
functions with arguments depending on the «'s.



HORN-TYPE HYPERGEOMETRIC FUNCTIONS
Specifically,
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with Hiar Vio rational, Aj, B, complex.
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An important property of Horn-type
hypergeometric functions is the existence of a
set of differential contiguous relations between
functions with shifted arguments.



DIFFERENTIAL REPRESENTATION

The Horn-Type HG series can be shown to satisfy
a system of differential equations of the form
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DIFFERENTIAL CONTIGUOUS RELATIONS

Both the upper (A) and lower (B) arguments can

be shifted

®(A+6,;B: %)=
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by applying differential operators:
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If inverse operators U[AC—>AC—1] . Ls s can be
found, they can be applied to form the basis of a

reduction
related by
single HG

algorithnm relating all HG functions

integer shifts in the arguments to a
function.



TAKAYAMA ALGORITHM

The complete differential reduction for ,F; was
constructed by Gauss (1823). The inverse
operators for the general Horn-type functions can
be constructed by the Takayama algorithm.
[Nobuki Takayama, Japan J. Appl. Math 6 (1989) 147].

The functions cD(A; B; 7<) satisfy differential
equations D ®(A; B;%)=0, j=1

with
0
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TAKAYAMA ALGORITHM

Let BB be the ring of differential operators with rational
functions of X as coefficients. Let 3 be the left ideal in B
of generated by the differential operators Dj and
construct a Grébner basis &={G. [1=1,...,q} of 3.

+

Then Ua ,a1]s  Lis s 1] are solutions to the linear
equations L1 L | | \
; fi (X)Gi +U[AC+1—>AC]U[AC—>AC+1] =1,

g
> 9i()Gi + s 1, Ljp, e, =L
i=1

where f;, g; are arbitrary rational functions. Solutions exist
if the left ideal generated by &u{U; } [or{L, }] spans 4B.



DIFFERENTIAL REDUCTION

Once the raising and lowering operators are
available, it is possible to express all HG
functions with integer shifts in terms of an
original function @(A;8;%) and polynomials
such that PR,(X),P, ... (X)

P, (R)®(A+a; B+b;%)= 2 P (X)H:l[ijm'q)(li; B: %)

Cases where X; = X; or PO(X) =0 require a limiting
procedure to define the reduction.



GENERALIZED HYPERGEOMETRIC FUNCTIONS

Generalized HG Functions have the form

LS i i al’ T ap 1 = Hipzl(ai)n Zn
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with the Pochhammer symbol (a),=TI'(a + n)/T"(a)
They satisfy a differential equation
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The raising and lowering operators are

U[J;i—>ai+1] 1+a_5’ L[_bi+1—>bi] :1+ﬁ%'



RESULT OF REDUCTION

This allows a given HG function p.F,(8+ m, b +fi; 2)
to be expressed in terms of a basic function
-1 F,(@,b;Z) and p derivatives:

S(d,b,z) ,.,F,(@+mb+;z)

p —

=Y R(d,b,2)(z0,)" ,..F,(d,b;2).

k=0
where S, R, are polynomials in all parameters.

A program HYPERDIRE has been written to
automate differential reduction.

V.V. Bytev, M. Kalmykov, and B. Kniehl, in preparation. See Nucl. Phys.
B836[FS] (2010) 129 for the theory and some examples which follow.



CRITERIA FOR REDUCIBILITY

For certain cases of the parameters, the r.h.s. is further
reducible: can be expressed in terms of lower-order HG
functions or with fewer derivatives.

I: If one of the a{- IS an integer, only p — 1 derivatives are
needed: the pt" term becomes a polynomial.

|I: If one of the differences a, — b; is a positive integer (or
O) and certain conditions hold for the a;, the r.h.s. can
be expressed in terms of lower-order HG functions.

l1l: If at least two of the differences a, — b, — 1 are positive
iIntegers, and certain conditions hold on the a;, the
r.ns. can be expressed in terms of lower-order HG
functions.
IV: . F,(A+ma+k A+m+1,b+1;z) with integers m,k,I can be
fun

expressed in terms of F (A4d A+1b; G functions of

p+1° p

lower order, and derivatives.




EXAMPLE: SUNSET DIAGRAMS

The g-loop sunset diagram with 2 lines of m
mass m and q — 1 massless lines is
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with massive denominators
oy 2 1
(o S RS S
and massless denominators
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The Mellin-Barnes representation leads to
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where o, ¢ are the sums of the two kinds of exponent.



EXAMPLE: SUNSET DIAGRAMS

The one-loop case can be further reduced:

Forg=1 (o= 0)and integer a, , the hypergeometric
function is reducible via Criterion Il. The n/2 upper
and lower parameters can be removed:
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Compare Boos & Davydychev, Theor. Math. Phys. 89 (1991) 1052
This still satisfies Criterion |l, since for even «, either
a, - af2 or o, - af2 must be a positive integer or O,
while for odd «, similar reasoning applies to (a +1)/2.

Thus, we can reduce the result to ,F, with one integer
upper parameter.




EXAMPLE: SUNSET DIAGRAMS

The two-loop case can also be further reduced:
Forq=2 and o, a; integers, the parameters become

p2

which has integer parameter differences and an integer
upper parameter, so it can be reduced to ;F, and its
first derivative, plus a rational function, with ;F, of the

form L1, -2, 1,-n| p?
F
3" 2 4m2 1

n n
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EXAMPLE: BUBBLE DIAGRAM

Consider the g-loop vacuum bubbles
where the two black lines have mass M,
the two red lines have mass m, and the
g — 3 gold lines are all massless.

The propagators of mass m have

exponents ¢, o,, the propagators of

mass M have exponents £, 3, the X ((°)

upper massless propagators have

exponents ¢, and the g — x— 3 lower

ones have exponents p. M M
This Feynman diagram is denoted B9 15500- ~



EXAMPLE: BUBBLE DIAGRAM

In this case, a lengthy expression is obtained giving a sum
of four HG functions ;F;. These can be reduced to

(0.} 4F3[Il—g(x—l)l Do 1, — D (L) ], e )‘ J
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, Ll +3,01,-5@-1.1,-5(@-2) I, -5(a-3)
(20:) F(I +2 1 +3-2(g-2),1, - 2(g—x-2), I, =2 (g —x—3)

fork=0, 1, 2, 3 and I, integers.



EXAMPLE: BUBBLE DIAGRAM

In the special case x = 0, the first of these HG functions
can be further reduced to

o} 3|:2(1,54 2Eq+1),+5(q2 ZWFJ

fork =0, 1 and I; integers.

In the special case x = 1, the first of these HG functions
can be reduced to

Ll -2 0,-n1,+1+2(q-3
B s L
( )“’[ o+ 1, +2g-2) 1,52 szj
fork=0, 1, 2 and I; integers.



ENUMERATING MASTER INTEGRALS

All examples we considered give a Feynman diagram of the
form

ofnTit)- 2 01) . § <2

where jis a list of powers of propagators, nis the
dimension, and z is a ratio of kinematic parameters, while
K are ratlonal numbers, and C are products of I
functions depending only on n and j-

The number of basis elements in the differential reduction is
the highest power v of the differential operator in the

expansion (Q
ZJ

A v A-1,
ol SRy e[S

Where R, are rational functions and TI are lists of integers.

p+1



ENUMERATING MASTER INTEGRALS

The Feynman diagram ®(z) can alternatively be
expressed in terms of a set of master integrals ®, (2)
that may be derived from ®(z) via integration by parts
(IBP), symbolically

o(n, 1:2)= 3 B, (n,T:2) , (n:2)

where terms expressible solely in terms of gamma
functions are not counted.

The number of terms in this expansion is related to
the number of derivatives in the differential
reduction:

h=v+1.

This is independent of the number k of hypergeometric
functions in the original expression.
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