Recent results on twophoton physics at BABAR

V. Druzhinin (BINP, Novosibirsk) for BaBar Collaboration

ICHEP 2010 - Paris July 23, 2010

Two-photon reaction $e^+e^- \rightarrow e^+e^- P$

- Electrons are scattered predominantly at small angles.
- For pseudoscalar meson production the cross section depends on only one form factor $F(q_1^2, q_2^2)$, which describes the $\gamma^*\gamma^* \rightarrow P$ transition.

No-tag mode:

- ✓both electrons are undetected
- $\sqrt{q_1^2}, q_2^2 \approx 0$
- $\checkmark\Gamma\gamma\gamma$ or F(0,0)
- ✓ Study of resonance parameters

Single-tag mode:

- ✓one of electrons is detected
- $\sqrt{Q^2} = -q_1^2$
- \checkmark d σ /dQ² ~1/ Q⁶ for light

mesons

 $\checkmark F(Q^2,0)$

$e^+e^- \rightarrow e^+e^- \eta_c$, $\eta_c \rightarrow K_S K^+ \pi^-$, no-tag

J.P.Lees et al., Phys. Rev. D 81 052010 (2010) [arXiv:1002:3000]

J/ ψ 's are produced in the ISR process. ISR events can be separated using the condition $p^*/(1-M_{KK\pi}^2/s)>5.1~{\rm GeV}/c,$

$e^+e^- \rightarrow e^+e^-\eta_c$, no-tag mode

J.P.Lees et al., Phys. Rev. D **81** 052010 (2010) [arXiv:1002:3000]

	Mass, MeV	Width,MeV
PDG	2980.5±1.2	27.4±2.9
BABAR(88 fb ⁻¹)	2982.5±1.1±0.9	34.3±2.3±0.9
BABAR(470 fb ⁻¹),	2982.2±0.4±1.5	31.7±1.2±0.8

Main sources of systematic uncertainties are unknown background shape and possible interference between the η_c and non-resonant two-photon amplitudes.

$$N(\eta_c)=13890\pm320\pm670$$

BABAR: $\Gamma(\eta_c \rightarrow \gamma \gamma)B(\eta_c \rightarrow KK\pi) = 0.379 \pm 0.009 \pm 0.031 \text{ keV}$

PDG: 0.44±0.04 keV, CLEO: 0.407±0.022±0.028 keV

$e^+e^- \rightarrow e^+e^-\eta_c(2S)$, no-tag mode

 $620\pm70\pm30$ $\eta_c(2S)$ events are observed.

	Mass, MeV	Width,MeV
PDG	3637±4	14±7
BABAR(88 fb ⁻¹)	3630.8±3.4±1.0	17.0±8.3±2.5
BABAR(521 fb ⁻¹), preliminary	3638.3±1.5±0.5	14.2±4.4±2.5

$e^+e^- \rightarrow e^+e^-\eta_c(2S)$, no-tag mode

1190±130±180 $\eta_c(2S)$ events are observed.

$$\frac{B(\eta_c)}{B(c)}$$

$$B(\eta_c(2S) \to K^+ K^- \pi^+ \pi^- \pi^0)$$

$$B(\eta_c(2S) \to K_S K^{\pm} \pi^{\mp})$$

$e^+e^- \rightarrow e^+e^- P$, single tag

$$F(Q^2) = \int T(x,\mu^2) \varphi(x,\mu^2) dx$$

Hard scattering amplitude for $\gamma^*\gamma \rightarrow q\bar{q}$ transition which is calculable in pQCD Nonperturbative pion distribution amplitude describing transition $P \rightarrow qq$

x is the fraction of the meson momentum carried by one of the quarks

Data on the form factor are used to test phenomenological models for the meson distribution amplitude.

$e^+e^- \rightarrow e^+e^- P$, single tag

$e^+e^- \rightarrow e^+e^-\eta_c$, form factor

J.P.Lees et al., Phys. Rev. D **81** 052010 (2010)

Systematic uncertainty independent of Q² is 4.3%.

- The form factor is normalized to F(0) obtained from no-tag data
- The form factor data are fit with the monopole function

$$F(Q^2) = F(0)/(1+Q^2/\Lambda)$$

- The result $\Lambda=8.5\pm0.6\pm0.7$ GeV² does not contradict to the vector dominance model with $\Lambda=m^2_{1/w}=9.6$ GeV².
- pQCD: Due to relatively large c-quark mass, the η_c form factor is rather insensitive to the shape of the η_c distribution amplitude. Λ is expected to be about 10 GeV² (T. Feldmann, P.Kroll, Phys. Lett. B 413, 410 (1997)).
- Lattice QCD: Λ =8.4±0.4 GeV² (J.J.Dudek, R.G.Edwards, Phys. Rev. Lett. 97, 172001 (2006)).

$e^+e^- \rightarrow e^+e^-\pi^0$, theory

$$Q^{2}F(Q^{2}) = \frac{\sqrt{2}f_{\pi}}{3} \int_{0}^{1} \frac{dx}{x} \varphi_{\pi}(x,Q^{2}) + O(\alpha_{s}) + O(\Lambda_{QCD}^{2}/Q^{2})$$

$$\varphi_{ASY} = 6x(1-x)$$

$$A.P.Bakulev, S.V.Mikhailov, N.G.Stefanis, Phys. Rev. D 67, 074012, light-cone sum rule method at NLO pQCD+twist-4 power corrections.
$$Q^{2}(\text{GeV}^{2}) = \frac{\sqrt{2}f_{\pi}}{3} \int_{0}^{1} \frac{dx}{x} \varphi_{\pi}(x,Q^{2}) + O(\alpha_{s}) + O(\Lambda_{QCD}^{2}/Q^{2})$$

$$\varphi_{ASY} = 6x(1-x)$$

$$A.P.Bakulev, S.V.Mikhailov, N.G.Stefanis, Phys. Rev. D 67, 074012, light-cone sum rule method at NLO pQCD+twist-4 power corrections.
$$Q^{2}(\text{GeV}^{2}) = \frac{\sqrt{2}f_{\pi}}{3} \int_{0}^{1} \frac{dx}{x} \varphi_{\pi}(x,Q^{2}) + O(\alpha_{s}) + O(\Lambda_{QCD}^{2}/Q^{2})$$

$$Q^{2}(\text{GeV}^{2}) = \frac{\sqrt{2}f_{\pi}}{3} \int_{0}^{1} \frac{dx}{x} \varphi_{\pi}(x,Q^{2}) + O(\alpha_{s}) + O(\Lambda_{QCD}^{2}/Q^{2})$$

$$Q^{2}(\text{GeV}^{2}) = \frac{\sqrt{2}f_{\pi}}{3} \int_{0}^{1} \frac{dx}{x} \varphi_{\pi}(x,Q^{2}) + O(\alpha_{s}) + O(\Lambda_{QCD}^{2}/Q^{2})$$

$$Q^{2}(\text{GeV}^{2}) = \frac{\sqrt{2}f_{\pi}}{3} \int_{0}^{1} \frac{dx}{x} \varphi_{\pi}(x,Q^{2}) + O(\alpha_{s}) + O(\Lambda_{QCD}^{2}/Q^{2})$$

$$Q^{2}(\text{GeV}^{2}) = \frac{\sqrt{2}f_{\pi}}{3} \int_{0}^{1} \frac{dx}{x} \varphi_{\pi}(x,Q^{2}) + O(\alpha_{s}) + O(\Lambda_{QCD}^{2}/Q^{2})$$

$$Q^{2}(\text{GeV}^{2}) = \frac{\sqrt{2}f_{\pi}}{3} \int_{0}^{1} \frac{dx}{x} \varphi_{\pi}(x,Q^{2}) + O(\alpha_{s}) + O(\alpha_{s}) + O(\alpha_{s}) + O(\alpha_{s})$$

$$Q^{2}(\text{GeV}^{2}) = \frac{\sqrt{2}f_{\pi}}{3} \int_{0}^{1} \frac{dx}{x} \varphi_{\pi}(x,Q^{2}) + O(\alpha_{s}) + O(\alpha_{s})$$

$$Q^{2}(\text{GeV}^{2}) = \frac{\sqrt{2}f_{\pi}}{3} \int_{0}^{1} \frac{dx}{x} \varphi_{\pi}(x,Q^{2}) + O(\alpha_{s}) + O(\alpha_{s})$$

$$Q^{2}(\text{GeV}^{2}) = \frac{\sqrt{2}f_{\pi}}{3} \int_{0}^{1} \frac{dx}{x} \varphi_{\pi}(x,Q^{2}) + O(\alpha_{s})$$$$$$

→ The Q^2 evolution of the DA is very slow. As result the form factor Q^2 dependence is almost flat at $Q^2 > 20$ GeV².

 GeV^2 , and 10% at 50 GeV^2

$e^+e^- \rightarrow e^+e^-\pi^0$, comparison with theory

B. Aubert et al., Phys. Rev. D80, 052002 (2009)

- ✓ In Q² range 4-9 GeV² our results are in a reasonable agreement with CLEO data but have significantly better accuracy.
- ✓ At Q²>10 GeV² the measured form factor exceeds the asymptotic limit $\sqrt{2}f_{\pi}$ =0.185 GeV.
- ✓ A.P.Bakulev, S.V.Mikhailov, N.G.Stefanis, Phys. Rev. D 67, 074012, light-cone sum rule method at NLO pQCD+twist-4 power corrections.

$e^+e^- \rightarrow e^+e^-\pi^0$, after publication

A.E.Dorokhov, arXiv:0905.4577, 1003.4693.

A.V. Radyuskin, arXiv:0906.0323. M.V.Polyakov, arXiv:0906.0538 ...

A flat pion distribution amplitude $\phi_{\pi}(x) \approx 1$ is used to reproduce Q² dependence of BABAR data.

To avoid divergence the infrared regulator m² can be introduced

$$Q^{2}F_{\pi\gamma}(Q^{2}) = \frac{\sqrt{2}f_{\pi}}{3} \int_{0}^{1} dx \, \frac{\phi_{\pi}(x,Q)}{x + m^{2}/Q^{2}}$$

The result has a logarithmic rise with the Q² increase

$$Q^2F(Q^2)=b+a ln Q^2 (GeV^2)$$

with a≈0.06 GeV²

η and η form factors

The systematic uncertainties independent of Q^2 are 2.9% for the η form factor and 3.5% for the η^{\prime} form factor.

η and η form factors

- CLEO and BABAR data on the time-like transition form factors are added.
- They are extracted from the $e^+e^-\to \eta^{(\prime)}\gamma$ cross section measurements at $Q^2=14.2~GeV^2$ (CLEO) and 112 GeV^2 (BABAR).
- At large Q^2 the time- and space-like values are expected to be close.
- This is confirmed by the CLEO result.
- The BABAR time-like data allow to extend the Q² region up to 112 GeV²

Discussion: η and η' form factors

- •The BABAR data are fit with $Q^2F(Q^2)=b+a$ ln Q^2 (GeV²) with $\chi^2/n=6.7/10$ for η and 14.6/10 for η'
- •The fitted rise (a \approx 0.2 GeV²) is about 3 times weaker than that for π^0 .
- The fit by a constant for $Q^2>15$ GeV² also gives reasonable quality: $\chi^2/n=5.6/5$ for η and 2.6/5 for η' .

η - η mixing in the quark flavor basis

$$|n\rangle = \frac{1}{\sqrt{2}}(|\bar{u}u\rangle + |\bar{d}d\rangle), |s\rangle = |\bar{s}s\rangle, \qquad \phi \approx 41^{\circ}$$

$$|\eta\rangle = \cos\phi |n\rangle - \sin\phi |s\rangle, |\eta'\rangle = \sin\phi |n\rangle + \cos\phi |s\rangle.$$

The form factors for the $|n\rangle$ and $|s\rangle$ states are introduced

$$F_{\eta} = \cos \phi F_n - \sin \phi F_s$$
, $F_{\eta'} = \sin \phi F_n + \cos \phi F_s$,

with asymptotic limits
$$Q^2F_s(Q^2)=rac{2}{3}f_s, \quad Q^2F_n(Q^2)=rac{5\sqrt{2}}{3}f_n,$$

where decay constants is expected to be $f_n = f_{\pi}$, $f_s = 1.34 f_{\pi}$

One can expect that the DA for the $|n\rangle$ state is close to the π^0 DA. Under this assumption the only difference between the $|n\rangle$ and π^0 DAs is a factor of 3/5 coming from the quark charges.

Form factor for |n and |s state

- The Q^2 dependencies of the measured $|n\rangle$ and π^0 form factors are strongly different.
- The data on the |n> form factor are described well by the model with BMS DA.

- For |s> all data points lie well below the pQCD prediction for the asymptotic DA.
- Is DA for |s> narrower than the asymptotic DA?
- The result for $|s\rangle$ strongly depends on mixing parameters, for example, on a possible two-gluon contents in $\eta^{/}$.

Summary

- ✓ The new precise measurements of the η_c and η_c (2S) masses and widths have been performed in the two-photon reaction.
- ✓ The new decay η_c and η_c (2S) modes to K+K- π + π - π^0 have been observed.
- ✓ The $\gamma^*\gamma \rightarrow \eta_c$ form factor has been measured for Q² range from 2 to 50 GeV²
- ✓ The η_c form factor data are in reasonable agreement with both QCD and VDM predictions.

Summary

- ✓ The $\gamma^*\gamma \rightarrow \pi^0$, η, η' transition form factors have been measured for Q² range from 4 to 40 GeV².
- ✓ The unexpected Q² dependence of the $\gamma^*\gamma \rightarrow \pi^0$ form factor is observed. At Q²>10 GeV² the data lie above the asymptotic limit.
- ✓ The measured Q² dependencies for the $\gamma\gamma^* \rightarrow \eta$ and $\gamma\gamma^* \rightarrow \eta'$ transition form factors strongly differ from that for $\gamma\gamma^* \rightarrow \pi^0$ form factor.
- \checkmark The η' data are in good agreement with the result of QCD calculation with a conventional DA, equal to zero at the end points.
- \checkmark For η the agreement is worse. A mild logarithmic rise of $Q^2F(Q^2)$ is not excluded.
- ✓ We plan to update our measurements of $\gamma \gamma^* \rightarrow \eta$ and $\gamma \gamma^* \rightarrow \eta'$ time-like transition form factors at Q²=112 GeV².

