Studies with Initial State Radiation at BABAR

E. Solodov

Budker INP, Novosibirsk, Russia (for BaBar collaboration)

Outline

- Short introduction
- Overview of results obtained up to now
- Preliminary results for $K^+K^-\pi^+\pi^-$, $K^+K^-\pi^0\pi^0$, $K^+K^-K^+K^-$
- Conclusion

PEP-II and BaBar were designed for B-physics, but they are excellent machine and detector for ISR study! About 500 fb⁻¹ are available for analysis.

$$\frac{d\sigma(s,x)}{dxd(\cos\theta)} = W(s,x,\theta) \cdot \frac{\sigma_0(s(1-x))}{\sigma_0(s(1-x))},$$

$$W(s,x,\theta) = \frac{\alpha}{\pi x} \left(\frac{2-2x+x^2}{\sin^2\theta} - \frac{x^2}{2}\right), \quad x = \frac{2E_{\gamma}}{\sqrt{s}}$$

$$e$$

$$\pi^+$$

$$0,\phi...$$

$$\pi^-$$

$$\pi^-$$

Motivation

- Low energy e⁺e⁻ cross section dominates in hadronic contribution to a₁₁ = (g-2)/2 of muon
- Direct e⁺e⁻ data in 1.4 2.5 GeV region have very low statistic
- Hadron spectroscopy at low masses and charmonium region
- ISR at BaBar gives competitive statistic
- BaBar has excellent capability for ISR study
- All major hadronic processes are under study

```
\begin{array}{l} e^{+}e^{-} \to 2\mu\gamma, \ 2\pi\gamma, \ 2K\gamma, \ 2p\gamma, \ 2\Lambda\gamma, \ 2\Sigma\gamma, \ \Lambda\Sigma\gamma, \ \Lambda_{c}\Lambda_{c}\gamma \\ e^{+}e^{-} \to 3\pi\gamma \\ e^{+}e^{-} \to 2(\pi^{+}\pi^{-})\gamma, \ K^{+}K^{-}\pi^{+}\pi^{-}\gamma, \ K^{+}K^{-}\pi^{0}\pi^{0}\gamma, \ 2(K^{+}K^{-})\gamma \\ e^{+}e^{-} \to 2(\pi^{+}\pi^{-})\pi^{0}\pi^{0}\gamma, \ 3(\pi^{+}\pi^{-})\gamma, \ K^{+}K^{-}2(\pi^{+}\pi^{-})\gamma \\ e^{+}e^{-} \to \pi^{+}\pi^{-}\pi^{0}\pi^{0}\gamma, \ \pi^{+}\pi^{-}\pi^{0}\pi^{0}\gamma, \ \pi^{+}\pi^{-}\pi^{0}\eta\gamma \ \dots \\ e^{+}e^{-} \to K^{+}K^{-}\pi^{0}\gamma, \ K^{+}K^{-}\eta\gamma \ (KK^{*}\gamma, \ \phi\pi^{0}\gamma, \ \phi\eta\gamma \ \dots) \\ e^{+}e^{-} \to \pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{0}/\eta\gamma, \ K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}/\eta\gamma \end{array}
```

Are being updated to full BaBar data with ~500fb-1

BaBar measurements summary

To calculate R in the energy range 1-2 GeV the processes $\pi^+\pi^-3\pi^0$, $\pi^+\pi^-4\pi^0$, K^+K^- , K_SK_L , $K_SK_L\pi\pi$, $K_SK^+\pi^-\pi^0$ must be measured. Work is in progress.

$e^+e^- \rightarrow \pi^+\pi^-$ cross section (1)

- ISR γ detected ==> powerful background rejection
- Kinematic fit including 1 additional γ : NLO
- □ All efficiencies (trigger, filter, tracking, PID, fit) from the same data
- Measure ratio of ππ to μμ to cancel:
 ee Luminosity, additional ISR,
 vacuum polarization, ISR γ efficiency
 Total systematic uncertainties in the ρ region 0.5%

a_u : where we stand:

 $a_{\mu} - a_{\mu}^{exp}$

new deviation:

$$a_{\mu}^{exp} - a_{\mu}^{SM} = (-25.5 \pm 8.0) \text{ x} 10^{-10}$$

still above 3σ!

 $imes 10^{-11}$

$e^+e^- \rightarrow \pi^+\pi^-$ cross section (2)

Good agreement with VEPP-2M data, DM2 data have large systematic errors. Can we understand all structures in the cross section?

$e^{+}e^{-} \rightarrow K^{+}K^{-}\pi^{+}\pi^{-}, K^{+}K^{-}\pi^{0}\pi^{0}$

Our previous publications PRD-RC 74 (2006) 091103 Motivation for new study: PRD 76 (2007) 012008

- Factor 2 more statistics with respect to published results 454 fb⁻¹
- Search for $\phi(1020)f_0(980)$ final state and Y(2175) update
- Improve BR of J/ψ and $\psi(2S)$
- Search for new states

- Systematic error 5% (was 8%)
- Error dominated by acceptance

- Still no other measurements
- Systematic error 7% (was 11%)

Kaon substructures for $K^+K^-\pi^+\pi^-$, $\pi^0\pi^0$

Cross section dominates by $K^{*0}(892)K\pi$ final state. Only ~1% of events associated with $K^{*0}K^{*0}$!! But $K^{*0}(892)K_2^*(1430)^0$ + c.c. is seen.

Also $K_1(1270,1400) \rightarrow K*(892)K$, $K*(892)\pi$ are seen ρ 's are from $K_1(1270)$, $K_1(1400) \rightarrow K\rho$ decay

Selection of $\phi(1020)\pi^+\pi^-$, $\pi^0\pi^0$

The $f_0(980)$ parameters are not shifted from PDG values – f_0 - $\pi\pi$ interference is small because of kinematics.

Cross sections for $e^+e^- \rightarrow \phi \pi^+\pi^-$, $\phi \pi^0\pi^0$

July, 2010

Cross section for $e^+e^- \rightarrow \phi f_0(980)$, Y(2175)

XS is corrected by:

$$Br(\phi \to K^+K^-) = 0.491$$

$$Br(f_0 \to \pi^+ \pi^-) = 2/3$$

$$Br(f_0 \to \pi^0 \pi^0) = 1/3$$

A fit with free interference phase with continuum

July, 2010

$$\mathsf{K}^+\mathsf{K}^-\pi^0\pi^0$$
 + $\mathsf{K}^+\mathsf{K}^-\pi^+\pi^-$

$$\sigma_0^{x}$$
 = 0.104 ± 0.025 nb
 m_x = 2.179 ± 0.009 GeV/c²
 Γ_x = 0.079 ± 0.017 GeV

$$\sigma_0 = \frac{12\pi\Gamma_{ee}B_f}{m^2C}$$

$$\Gamma_{ee} \cdot B_{\phi f0} = (2.3 \pm 0.4 \pm 0.3) \text{ eV}$$

$$2 \ln (L_0/L_x) = \text{sqrt} (150 - 64) \sim 9.3 \sigma$$

ISR at badar, E.SUIUUUV

Good overall agreement with 670 fb⁻¹ Belle data for $K^+K^-\pi^+\pi^-$ channel

Evidence of Y (2175) in K+K-f₀ final state

Raw $\pi\pi$ mass No background subtraction

Possible nature of Y(2175):

1 - ssss, 2 - ϕ " but no BR ϕ ππ,

3- Y(2175) is similar to Y(4260): Y(4260) = $J/\Psi f_0$, Γ_{ee} =5.5 eV Y(2175)= ϕf_0 , Γ_{ee} =2.5 eV

July, 2010

ISR at BaBar, E.Solodov

12

$e^+e^- \rightarrow K^+K^-K^+K^-$

J/ψ region for $K^{+}K^{-}\pi^{+}\pi^{-}$, $K^{+}K^{-}\pi^{0}\pi^{0}$, $K^{+}K^{-}K^{+}K^{-}$

TABLE XIII: Summary of the J/ψ and $\psi(2S)$ branching fraction values obtained in this analysis,

Measured	Measured	J/ψ or $\psi(2S)$ Branching Fraction (10 ⁻³)	
Quantity	Value (eV)	This work	PDG2009
$\Gamma^{J/\psi}_{ee}$ $\mathcal{B}_{J/\psi o K^+K^-\pi^+\pi^-}$	$37.94 \pm 0.81 \pm 1.10$	$6.84{\pm}0.15{\pm}0.27$	6.6 ± 0.5
$\Gamma_{ee}^{J/\psi} \cdot \mathcal{B}_{J/\psi \to K^+K^-\pi^0\pi^0}$	$11.75 \pm 0.81 \pm 0.90$	$2.12\pm0.15\pm0.18$	2.45 ± 0.31
$\Gamma_{ee}^{J/\psi} \cdot {\cal B}_{J/\psi o K^+K^-K^+K^-}$	$4.00 \pm 0.33 \pm 0.29$	$0.72 {\pm} 0.06 {\pm} 0.05$	0.76 ± 0.09
$\Gamma^{J/\psi}_{ee} \cdot \mathcal{B}_{J/\psi \to K^{*0} \overline{K}_2^{\bullet}0} \cdot \mathcal{B}_{K^{*0} \to K^+\pi^-} \cdot \mathcal{B}_{\overline{K}_2^{\bullet}0 \to K^-\pi^+}$	$8.59 {\pm} 0.36 {\pm} 0.27$	$6.98{\pm}0.29{\pm}0.21$	6.0 ± 0.6
$\Gamma_{ee}^{J/\psi} \cdot \mathcal{B}_{J/\psi \to K^{ullet 0} \overline{K}^{ullet 0}} \cdot \mathcal{B}_{K^{ullet 0} \to K^+\pi^-} \cdot \mathcal{B}_{\overline{K}^{ullet 0} \to K^-\pi^+}$	$0.57{\pm}0.15{\pm}0.03$	$0.23\pm0.06\pm0.01$	0.23 ± 0.07
$\Gamma^{J/\psi}_{ee}\cdot \mathcal{B}_{J/\psi o\phi\pi^+\pi^-}\cdot \mathcal{B}_{\phi o K^+K^-}$	$2.19 \pm 0.23 \pm 0.07$	$0.81\pm0.08\pm0.03$	0.94 ± 0.09
$\Gamma_{ee}^{J/\psi} \cdot \mathcal{B}_{J/\psi o \phi \pi^0 \pi^0} \cdot \mathcal{B}_{\phi o K^+ K^-}$	$1.36 {\pm} 0.27 {\pm} 0.07$	$0.50\pm0.10\pm0.03$	0.56 ± 0.16
$\Gamma_{ee}^{J/\psi} \cdot \mathcal{B}_{J/\psi o \phi K^+ K^-} \cdot \mathcal{B}_{\phi o K^+ K^-}$	$2.26{\pm}0.26{\pm}0.16$	$1.66 \pm 0.19 \pm 0.12$	1.83 ± 0.24 ^a
$\Gamma_{ee}^{J/\psi} \cdot \mathcal{B}_{J/\psi o \phi f_0} \cdot \mathcal{B}_{\phi o K^+K^-} \cdot \mathcal{B}_{f_0 o \pi^+\pi^-}$	$0.69 {\pm} 0.11 {\pm} 0.05$	$0.25\pm0.04\pm0.02$	$0.18 \pm 0.04^{\ b}$
$\Gamma_{ee}^{J/\psi} \cdot \mathcal{B}_{J/\psi o \phi f_0} \cdot \mathcal{B}_{\phi o K^+K^-} \cdot \mathcal{B}_{f_0 o \pi^0\pi^0}$	$0.48{\pm}0.12{\pm}0.05$	$0.18\pm0.04\pm0.02$	0.17 ± 0.07 ^c
$\Gamma^{J/\psi}_{ee}\cdot \mathcal{B}_{J/\psi o \phi f_x}\cdot \mathcal{B}_{\phi o K^+K^-}\cdot \mathcal{B}_{f_x o \pi^+\pi^-}$	$0.74{\pm}0.12{\pm}0.05$	$0.27{\pm}0.04{\pm}0.02$	0.72 ± 0.13^{d}
4/25)			
$\Gamma_{ee}^{\psi(2S)} \cdot \mathcal{B}_{\psi(2S) \to K^+K^-\pi^+\pi^-}$	$1.92\pm0.30\pm0.06$	$0.81\pm0.13\pm0.03$	0.75 ± 0.09
$\Gamma_{ee}^{\psi(2S)} \cdot \mathcal{B}_{\psi(2S) \to K^+K^-\pi^0\pi^0}$	$0.60 \pm 0.31 \pm 0.03$	$0.25\pm0.13\pm0.02$	no entry
$\Gamma_{ee}^{\psi(2S)} \cdot \mathcal{B}_{\psi(2S) \to K^+K^-K^+K^-}$	$0.22{\pm}0.10{\pm}0.02$	$0.09\pm0.04\pm0.01$	0.060 ± 0.014
$\Gamma_{ee}^{\psi(2S)} \cdot \mathcal{B}_{\psi(2S) \to \phi \pi^+ \pi^-} \cdot \mathcal{B}_{\phi \to K^+ K^-}$	$0.27{\pm}0.09{\pm}0.02$	$0.23\pm0.08\pm0.01$	0.117 ± 0.029
$\Gamma_{ee}^{\psi(2S)} \cdot \mathcal{B}_{\psi(2S) \to \phi f_0} \cdot \mathcal{B}_{\phi \to K^+K^-} \cdot \mathcal{B}_{f_0 \to \pi^+\pi^-}$	$0.17{\pm}0.06{\pm}0.02$	$0.15\pm0.05\pm0.01$	0.068±0.024 ^e

 $^{{}^}a\mathcal{B}_{J/\psi\to\phi KK} \text{ obtained as } 2\cdot\mathcal{B}_{J/\psi\to\phi K^+K^-}.$ ${}^b\text{Not corrected for the } f_0\to\pi^0\pi^0 \text{ mode}.$

Small systematic errors allow BaBar to improve BF for major decay modes.

^cNot corrected for the $f_0 \rightarrow \pi^+\pi^-$ mode.

dWe compare our $\phi f_x, f_x \to \pi^+\pi^-$ mode with $\phi f_2(1270)$.

 $^{{}^{}e}\mathcal{B}_{\psi(2S)\to\phi f_0}, f_0\to\pi^+\pi^-$

Conclusions

- 1. ISR method is developed at Babar as a practical tool to study e+e- annihilation in wide CM energy range.
- 2. Numerous number of e+e→ hadrons process are studied at Babar including productions of pions, kaons, baryons, D-mesons, new states Y(4260), Y(2175), ...
- 3. Babar data significantly contribute to $(g-2)_{\mu}$ calculation. Most of the channels have best to date accuracy.
- 4. Decay parameters of many vector mesons are improved $\rho_S, \omega_S, \phi_S, J/\psi, \psi(2S), ...$
- 5. We present new (preliminary) study of $K^+K^-\pi^+\pi^-$, $K^+K^-\pi^0\pi^0$, $K^+K^-K^+K^-$ channel production via ISR.
- 6. We confirm Y(2175) evidence with ~9 standard deviation significance and improve measurement of its parameters.
- 6. Some of the observed structures still have no proper theoretical explanation... PWA is needed to learn more..
- 7. More data are in hand and new results are coming...

PEP-II e+e- collider, Babar detector

E₊ = 3.1 GeV, E₋ = 9 GeV

 $E_{CM} = M(Y(45))=10.6 GeV$ 2000 - 2008 yrs $\Delta L = 500 fb^{-1}$ $N(B) = 10^9$

$$\frac{d\sigma(s,x)}{dxd(\cos\theta)} = W(s,x,\theta) \cdot \frac{\sigma_0(s(1-x))}{\sigma_0(s(1-x))},$$

$$W(s,x,\theta) = \frac{\alpha}{\pi x} \left(\frac{2 - 2x + x^2}{\sin^2 \theta} - \frac{x^2}{2} \right), \quad x = \frac{2E_{\gamma}}{\sqrt{s}}$$

 θ - photon polar angle in c.m.

