Bose-Einstein Correlations

Measurements of Two-Particle Correlations in pp Collisions with CMS at the LHC

Stefano Lacaprara on behalf of the CMS collaboration

INFN Padova

ICHEP 2010 Paris, 22 July 2010

CMS-PAS-QCD-10-002 arXiv:1005.3294; CMS-PAS-QCD-10-003; CERN-PH-EP-2010-010 PRL 105, 032001 (2010) Outline

Bose-Einstein Correlations

Two-Particle Angular Correlations

- Analysis Technique
- Independent Cluster Model
- Results

2 Bose–Einstein Correlations

- Measurement
- Signal cross check with PID
- Results

Outline

Bose-Einstein Correlations

1 Two-Particle Angular Correlations

- Analysis Technique
- Independent Cluster Model
- Results

2 Bose–Einstein Correlations

- Measurement
- Signal cross check with PID
- Results

3 Conclusion

Motivation

Bose–Einstein Correlations

Conclusion

- in p-p, particles tend to be produced correlated (clusters)
- Study of angular correlations in soft particle
 production (left fig. outer "shell") give information on hadronization process;
- Extensive studies at ISR 25 $\leq \sqrt{s} \leq$ 62 GeV, SPS $\sqrt{s} = 200,546,900$ GeV RICH $\sqrt{s} = 200,410$ GeV

Bose-Einstein Correlations

Analysis Technique

Signal distribution

correlated and uncorrelated pairs

Two tracks from the same event $\Delta \eta = \eta_1 - \eta_2$, $\Delta \phi = \phi_1 - \phi_2$, for each total multiplicity (*N*) bin.

Background distribution

uncorrelated pairs

Two tracks from the different events with similar vertex z_{pos} and multiplicity

Stefano Lacaprara on behalf of the CMS coll

Two Particle Correlations

ICHEP'10, 22/07/2010 4 / 16

Bose-Einstein Correlations

Conclusion

Two particle correlation: 2D

Gaussian like in $\Delta \eta$, broader at large $\Delta \phi$ Small $\Delta \eta \ \Delta \phi$ peak enhanched at high energy

MC (Pythia D6T) Simulation qualitatively similar to data.

Bose-Einstein Correlations

Independent Cluster Model (ICM)

- Clusters are produced independently;
- Decay isotropically into hadrons in their *c.m.s.*;
- Just 2 parameters (cluster size and width) characterize short-range correlations.

- ICM provides a simple way to quantitatively parameterize two-particle correlations to compare with other experiment as well as various dynamical models such as PYTHIA.
- It is NOT a fundamental model to test against the data.

C.Quigg, Phys.Rev.D 9, 2016 (1974) - E.L.Berger, Nucl.Phys.B 85, 61 (1975).

Bose–Einstein Correlations

Quantitative analysis

Cluster parametrization vs $\Delta \eta$:

$$\begin{split} R(\Delta\eta) &= \left(\textit{K}_{eff} - 1 \right) \left[\frac{\Gamma(\Delta\eta)}{B(\Delta\eta)} - 1 \right], \text{ K.Eggert et al, Nucl.Phys.B 86 (1975) 201} \\ \Gamma(\Delta\eta) &\propto exp \left[-\frac{(\Delta\eta)^2}{(4\delta^2)} \right], B(\Delta\eta) \text{ measured from mixed event background} \\ \textit{K}_{eff}: \text{ effective cluster size. } \delta: \text{ cluster width} \end{split}$$

Bose-Einstein Correlations

INFN

8 / 16

Energy dependence of cluster analysis

Pythia: correct trend but smaller cluster size K_{eff} : width \sim well reproduced.

Stefano Lacaprara on behalf of the CMS coll

Bose-Einstein Correlations

- To compare with other experiments, need to extrapolate results to $p_{\rm T}=0$ (Tsallis function) and $|\eta|<3$.
- Systematics due to extrapolation \sim 5%.

Outline

Bose–Einstein Correlations

Two-Particle Angular Correlations

- Analysis Technique
- Independent Cluster Model
- Results

2 Bose–Einstein Correlations

- Measurement
- Signal cross check with PID
- Results

3 Conclusion

Bose–Einstein Correlation

- When wave-functions of identical bosons overlaps, Bose–Einstein statistics changes their dynamics;
- Seen as an enhancement probability for identical boson with small relative momenta.
- BEC measurements give informations about size, shape and space-time development of the emitting source

$$\begin{split} R(Q) &= \frac{dN/dQ}{dN/dQ_{ref}}. \qquad Q = \sqrt{-(p_1 - p_2)^2} = \sqrt{M_{inv}^2 - 4m_{\pi}^2} \\ Q \text{ distribution of same-charged tracks } (\pi) \text{ vs reference sample w/o BEC.} \end{split}$$

Parametrization

$$R(Q) = C \left[1 + \lambda \Omega(Qr)\right] \cdot (1 + \delta Q).$$

 $\Omega(Qr)$: Fourier transform of the emission region (in static model), effective radius r, strength λ , δ long range correlation.

Stefano Lacaprara on behalf of the CMS coll

Two Particle Correlations

Bose–Einstein Correlations

Conclusion

Stefano Lacaprara on behalf of the CMS coll

Bose–Einstein Correlations

Conclusion

INFN

BEC with identical/non identical particles

- using PID in CMS ($\frac{dE}{dx}$ measurement with CMS silicon tracker)
- Construct two samples: one with two identified π and one with π , not- π particles,
- Enhancement present only in $\pi\pi$ candidates, not in $\pi-\mathrm{not-}\pi$

- Small π contamination in not- π
- PID works only at low $p_{\rm T}$, not using π -not- π as ref. sample.

Bose–Einstein Correlations

Conclusion

INFN

BEC with identical/non identical particles

- using PID in CMS ($\frac{dE}{dx}$ measurement with CMS silicon tracker)
- Construct two samples: one with two identified π and one with π , not- π particles,
- Enhancement present only in $\pi\pi$ candidates, not in $\pi-\mathrm{not-}\pi$

- Small π contamination in not- π
- PID works only at low $p_{\rm T}$, not using π -not- π as ref. sample.

Bose–Einstein Correlations

Results: combined ref. sample

Results at 900 GeV: exponential

 $r = 1.59 \pm 0.05$ (stat.) ± 0.19 (syst.) fm $\lambda = 0.625 \pm 0.021$ (stat.) ± 0.046 (syst.)

Results at 2.36 TeV: exponential

$$\begin{split} r &= 1.99 \pm 0.18 \text{ (stat.)} \pm 0.24 \text{(syst.) fm} \\ \lambda &= 0.663 \pm 0.073 \text{ (stat.)} \pm 0.048 \text{ (syst.)} \end{split}$$

Systematics mostly from spread of 7 reference samples

 ρ resonance region excluded from fit

Exponential form for $\Omega(Qr) = e^{-Qr}$ fits data much better then the widely used Gaussian one $\Omega(Qr) = e^{-(Qr)^2}$.

Two-Particle Angular Correlations

Bose-Einstein Correlations

Previous experiment results

- Many different \sqrt{s} and initial states: $e^+e^- \bar{p}p$, pp, πN , ep, and $\nu_{\mu} N$
- Previous experiments used Gaussian parametrization.
- First moment of exponential: 1/r, Gaussian $\frac{1}{r\sqrt{\pi}}$.
- CMS values with exponential fits scaled by $1/\sqrt{\pi}$
- Apologise for any missing past experiment!

Bose–Einstein Correlations

Conclusion

Dependence on N_{charged} tracks

Outline

Bose-Einstein Correlations

Two-Particle Angular Correlations

- Analysis Technique
- Independent Cluster Model
- Results

2 Bose–Einstein Correlations

- Measurement
- Signal cross check with PID
- Results

Conclusions

Two-particle angular correlations measured @ 900 GeV, 2.36 and 7 $\,$ TeV

- Compared with simple cluster model;
- Cluster size and width compatible with previous experiments but not reproduced by Pythia;
- Will be good baseline to measure cluster properties with Heavy lons at LHC.

Bose-Einstein Correlation measured @ 900 GeV and 2.36 TeV

- Used double ratio combining many reference samples;
- Exponential shape fits better than gaussian;
- Clear dependence from track multipicity;
- Measurement at 7 TeV is in progress

BACKUP

Stefano Lacaprara on behalf of the CMS coll

Two Particle Correlations

ICHEP'10, 22/07/2010 1 / 23

Two Particle Correlation

Stefano Lacaprara on behalf of the CMS coll

Two Particle Correlations

ICHEP'10, 22/07/2010 2 / 23

Backup

CMS inner tracker

Pixel

- 3 barrel layers (*r* = 4,7,11 *cm*)
- 2x2 endcap disks
- $pprox 1 m^2$ of Si sensors
- $\approx 66M$ channels
- 1440 modules

Strips

- 10 barrel layers
- 9+3x2 endcap disks
- $\approx 200 \ m^2$ of Si sensors
- $\approx 6.4M$ channels
- 15148 modules

Stefano Lacaprara on behalf of the CMS coll

Performances

- 2-track separation: 1 mrad
- different hits on 3^{rd} pixel layers Q > 20 MeV
- ullet \geq 3 hits for $p_{
 m T}$ > 100 MeV
- $\Delta p_{\mathrm{T}}/p_{\mathrm{T}} pprox 1-2\%$ @ 1 GeV

- data collected in December 2009 $\sqrt{s}=$ 0.9 and 2.36 TeV and March 2010 $\sqrt{s}=$ 7 TeV.
- Trigger: MinimumBias. Activity in both Beam Scintillator Counters
- Coincidence with at least one HF tower with > 3 GeV (select Non-Single Diffractive events);
- Reject halo muons by time coincidence BSC;
- > 150 pixel clusters;
- One Primary Vertex dz < 4.5 cm, $\rho < 0.15$ cm.
- High-Purity tracks, $d_{xy}/\sigma_{xy} < 3 \ d_z/\sigma_z < 3$

Comparison with other Model

R(∆η)

		η Extrapolation
--	--	----------------------

MC 2d Prediction shape distortion due to $|\eta|$ cut

(a) ICM K=3

R(Δη,Δφ)

Stefano Lacaprara on behalf of the CMS coll

1.0

10-4

10-5

A

 $p_T^2 + m^2$ $dN/dp_T \sim p_T \frac{p_T}{\sqrt{p_T^2 + m^2}}$ Data 900GeV Data 2360Ge Data 7TeV 10⁻¹ 10⁻¹ 10⁻¹ 10⁻² dp/2p 40⁻² dp/Np ⁴⁰ dp/Np

2

n=7.3

p_(GeV/c)

T=0.136GeV

Use Tsallis fit to estimate fraction of lost tracks $p_{\rm T} < 100$ MeV

Reweight $100 < p_T < 200$ MeV distribution to compensate. cluster size increases by $\sim 6-7\%$

10-4

10-5

2

n=8.2

p_(GeV/c)

T=0.139GeV

10-4

A

2

n=6.5

p_T(GeV/c)

T=0.132GeV

systematics and results

	System	atic uncertainties [%]
Source	α	δ
Correction on event selection efficiency	2.6	2.8
Correction on tracking/acceptance efficiency and fake rate	1.3	1.4
Track quality cuts	1.2	1.0
Model dependence on the corrections	2.6	1.3
Total systematic uncertainties	4.1	3.5

Table: Final results on $K_{\rm eff}$ and δ with both systematic and statistical errors.

\sqrt{s}	$\kappa_{ m eff}$	δ
0.9 TeV	$2.12\pm0.00(ext{stat.})\pm0.05(ext{syst.})$	$0.53\pm0.01(ext{stat.})\pm0.02(ext{syst.})$
2.36 TeV	$2.23\pm0.02(ext{stat.})\pm0.05(ext{syst.})$	$0.52\pm0.01(ext{stat.})\pm0.02(ext{syst.})$
7 TeV	$2.34\pm0.00(\text{stat.})\pm0.06(\text{syst.})$	$0.51\pm0.01(\texttt{stat.})\pm0.02(\texttt{syst.})$

Backup ______

Bose-Einstein Correlation

Stefano Lacaprara on behalf of the CMS coll

Events and track selections

- data collected in December 2009 $\sqrt{s} = 0.9$ and 2.36 TeV.
- Trigger: MinimumBias. Activity in both Beam Scintillator Counters
- *NDoF* > 5;
- $\chi^2/\textit{NDoF} < 5;$
- Trasverse impact parameter $d_{xy} < 1.5 mm$;
- Innermost hit R < 20 cm impact point;
- |η| < 2.4;
- $p_{\mathrm{T}} > 200$ MeV;
- $2 \le N_{trk} \le 150$
- @ 900 GeV: 270 472 events and 2 903 754 track pairs;
- @ 2.36 TeV: 13 548 events and 188 140 track pairs.

Backup

Coulomb correction

- Coulomb repulsion between same charged particles depletes the Q distribution at low Q.
- Corrected with Gamow factor:

$$W_{S}(\eta) = \frac{e^{2\pi\eta} - 1}{2\pi\eta}$$
$$W_{D}(\eta) = \frac{1 - e^{-2\pi\eta}}{2\pi\eta}$$
$$\eta = \frac{\alpha_{em}m_{\pi}}{Q}$$

- Tested with opposite-charge Q-distribution normalized to MC (no coulomb effect simulated)
- Up: opposite charge Q distribution with Gamow factor superimposed (not fitted)
- Bottom: same after applying Coulomb correction

Single ratios and double ratios

- Q distribution for signal and one reference sample
- Enhancement at low-Q show the expected correlation
- MonteCarlo (w/o BEC simulation) is flat

- Opposite charge distribution show structure due to resonances (ρ)
- Long range correlation well described by simulation

Use Double Ratio for measurement. $\mathcal{R} = R/R_{MC} = \left(\frac{dN/dQ}{dN/dQ_{ref}}\right) / \left(\frac{dN/dQ_{MC}}{dN/dQ_{MC,ref}}\right)$

R(Q) for all reference sample @ 900 GeV

Fit with exponential form for Ω : $R(Q) = C \left[1 + \lambda e^{-(Qr)}\right] \cdot (1 + \delta Q)$.

Stefano Lacaprara on behalf of the CMS coll

Backup

Two Particle Correlations

14 / 23

Detailed results @ 900 GeV

Results of fits to 0.9 TeV data							
Reference sample	P-value	С	λ	r (fm)	δ (GeV ⁻¹)		
Opposite charges	2.19×10^{-1}	0.988 ± 0.003	0.557 ± 0.025	1.46 ± 0.06	$(-3.5 \pm 2.4) imes 10^{-3}$		
Opposite hem. same ch.	7.30×10^{-2}	0.978 ± 0.003	0.633 ± 0.027	1.50 ± 0.06	$(1.1 \pm 0.2) \times 10^{-2}$		
Opposite hem. opp. ch.	$1.19 imes 10^{-1}$	0.975 ± 0.003	0.591 ± 0.025	1.42 ± 0.06	$(1.3 \pm 0.2) \times 10^{-2}$		
Rotated	2.42×10^{-4}	0.929 ± 0.003	0.677 ± 0.022	1.29 ± 0.04	$(5.8 \pm 0.2) \times 10^{-2}$		
Mixed evts. (random)	1.90×10^{-2}	1.014 ± 0.002	0.621 ± 0.038	1.85 ± 0.09	$(-2.0 \pm 0.2) \times 10^{-2}$		
Mixed evts. (same mult.)	1.22×10^{-1}	0.981 ± 0.002	0.664 ± 0.030	1.72 ± 0.06	$(1.1 \pm 0.2) \times 10^{-2}$		
Mixed evts. (same mass)	1.70×10^{-2}	0.976 ± 0.002	0.600 ± 0.030	1.59 ± 0.06	$(1.4 \pm 0.2) \times 10^{-2}$		
Combined sample	2.92×10^{-2}	0.984 ± 0.002	0.625 ± 0.021	1.59 ± 0.05	$(8.2 \pm 0.2) \times 10^{-3}$		

Results of fits to 0.9 TeV data								
Multiplicity range	P-value	С	λ	<i>r</i> (fm)	δ (GeV ⁻¹)			
2 - 9	$9.7 imes 10^{-1}$	0.90 ± 0.01	0.89 ± 0.05	1.00 ± 0.07 (stat.) ± 0.05 (syst.)	$(7.2 \pm 1.2) \times 10^{-2}$			
10 - 14	3.8×10^{-1}	0.97 ± 0.01	0.64 ± 0.04	1.28 ± 0.08 (stat.) ± 0.09 (syst.)	$(1.8 \pm 0.5) imes 10^{-2}$			
15 - 19	2.7×10^{-1}	0.96 ± 0.01	0.60 ± 0.04	1.40 ± 0.10 (stat.) ± 0.05 (syst.)	$(2.8 \pm 0.5) imes 10^{-2}$			
20 - 29	2.4×10^{-1}	0.99 ± 0.01	0.59 ± 0.05	1.98 ± 0.14 (stat.) ± 0.45 (syst.)	$(1.3 \pm 0.3) \times 10^{-2}$			
30 - 79	2.8×10^{-1}	1.00 ± 0.01	0.69 ± 0.09	2.76 ± 0.25 (stat.) ± 0.44 (syst.)	$(1.0 \pm 0.3) \times 10^{-2}$			

Results of fits to 2.36 TeV data							
Reference sample	P-value	С	λ	r (fm)	δ (GeV ⁻¹)		
Opposite charges	5.71×10^{-1}	1.004 ± 0.008	0.529 ± 0.081	1.65 ± 0.23	$(-1.57 \pm 0.58) imes 10^{-2}$		
Opposite hem. same ch.	4.19×10^{-1}	0.977 ± 0.006	0.678 ± 0.110	1.95 ± 0.24	$(1.49 \pm 0.48) \times 10^{-2}$		
Opposite hem. opp. ch.	4.61×10^{-1}	0.969 ± 0.005	0.700 ± 0.107	2.02 ± 0.23	$(2.36 \pm 0.47) \times 10^{-2}$		
Rotated	4.24×10^{-1}	0.933 ± 0.007	0.610 ± 0.070	1.49 ± 0.15	$(5.75 \pm 0.59) \times 10^{-2}$		
Mixed evts. (random)	2.26×10^{-1}	1.041 ± 0.005	0.743 ± 0.154	2.78 ± 0.36	$(-4.02 \pm 0.41) \times 10^{-2}$		
Mixed evts. (same mult.)	3.52×10^{-1}	0.974 ± 0.005	0.626 ± 0.096	2.01 ± 0.23	$(2.03 \pm 0.46) \times 10^{-2}$		
Mixed evts. (same mass)	7.31×10^{-1}	0.964 ± 0.005	0.728 ± 0.107	2.18 ± 0.23	$(2.84 \pm 0.46) \times 10^{-2}$		
Combined sample	8.90×10^{-1}	0.981 ± 0.005	0.663 ± 0.073	1.99 ± 0.18	$(1.31 \pm 0.41) imes 10^{-2}$		

Results of fits to 2.36 TeV data						
2 - 19	0.65 ± 0.08	1.19 ± 0.17 (stat.)				
20 - 60	0.85 ± 0.17	2.38 ± 0.38 (stat.)				
Results of fits to 0.9 TeV data						
Multiplicity range λ r (fm)						
2 - 19	0.65 ± 0.02	1.25 ± 0.05 (stat.)				
20 - 60	0.63 ± 0.05	2.27 ± 0.12 (stat.)				

Table: Correlation coefficients for the fit parameters obtained with the combined reference samples. Left: coefficients from the fit to 0.9 TeV data; right: coefficients from the fit to 2.36 TeV data.

		0.9 Te	۶V		2.36 T	eV		
	С	λ	r	δ	С	λ	r	δ
С	1				1			
λ	0.33	1			0.27	1		
r	0.72	0.82	1		0.62	0.83	1	
δ	-0.97	-0.30	-0.67	1	-0.96	-0.24	-0.57	1

- \bullet Use spread between reference samples $\pm7\%$ for λ and $\pm12\%$ for r
- Coulomb correction syst by propagating agreement margin of opposite charge fit $\pm 2.8\%$ for λ and $\pm 0.8\%$ for r
- Compared BEC parameter at generation and reconstruction level with dedicated simulation: no bias, agreement within statistical errors.

Results at 900 GeV

$$r = 1.59 \pm 0.05 \; ({
m stat.}) \pm 0.19 \; ({
m syst.}) \; {
m fm}$$

 $\lambda = 0.625 \pm 0.021 \; ({
m stat.}) \pm 0.046 \; ({
m syst.})$

Results at 2.36 TeV

$$r = 1.99 \pm 0.18 \; ({
m stat.}) \pm 0.24 \; ({
m syst.}) \; {
m fm}$$

 $\lambda = 0.663 \pm 0.073 \; ({
m stat.}) \pm 0.048 \; ({
m syst.})$

Test for reconstruction Bias

- Dedicated MonteCarlo simulation with BEC enabled
- Pythia, exponential shape MSTJ(51)=1, PARJ(92)=0.9, PARJ(93)=0.125
- Performed analysis at Generated (left) and Reconstruction (right) level
- found no bias within the statistical uncertainties

Backup

Physics of Bose-Einstein Correlation

Two particles

- from source A, momentum p₁
- 2 from source B, momentum p₂

System wave-function

 $\begin{aligned} \Psi_A(1) &= f_A e^{-i\vec{p}_1 \vec{x}_A}, \dots \\ \text{Complete wave-function for Bosons is} \\ \Psi(1,2) &= (\Psi_A(1)\Psi_B(2) + \Psi_B(1)\Psi_A(2))/\sqrt{2} \\ \text{Joint probability is just the product of P of single particles.} \\ &< \Pi_{12} >= (f_A^2 + f_B^2 + [f_A^* f_B e^{i\vec{p}_1(x_A - x_B)} + c.c.])(\dots e^{i\vec{p}_2(x_A - x_B)} \dots) \\ \text{In a chaotic source } f_A^* f_B + c.c. \text{ fluctuate randomly and drop out of expectation value.} \end{aligned}$

$$R = \frac{\langle \Pi_{12} \rangle}{\langle \Pi_1 \rangle \langle \Pi_2 \rangle} = \frac{|\Psi(1,2)|^2}{|\Psi(1)|^2 |\Psi(2)|^2} = 1 + 2\frac{2f_A^2 f_B^2}{(f_A^2 + f_B^2)^2} \cos(\Delta x \Delta p)$$

	NA22 [?]	$Kp, \pi p$	250	0.800	uses q _t
	MARK II [?]	J/ψ	3.1	$0.810 \pm 0.020 \pm 0.050$	opp. sign
		J/ψ	3.1	$0.790 \pm 0.020 \pm 0.040$	mix event
		$\gamma\gamma$	39	$0.840 \pm 0.060 \pm 0.050$	opp. sign
		$\gamma\gamma$	39	$1.050 \pm 0.050 \pm 0.060$	mix event
		$q\bar{q}$	$4.1 \div 6.7$	$0.710 \pm 0.030 \pm 0.040$	opp. sign
		$q\bar{q}$	$4.1 \div 6.7$	$0.780 \pm 0.040 \pm 0.040$	mix event
		$q\bar{q}$	29	$0.840 \pm 0.060 \pm 0.050$	opp. sign
		$q\bar{q}$	29	$1.010 \pm 0.090 \pm 0.046$	mix event
	UA1 [?]	pp	$200 \div 900$	$0.729 \pm 0.031 \pm 0.029$	opp. sign
	NA27 [?]	pp	400	1.200 ± 0.030	mix event
	ALICE [?]	рр	900	$0.874 \pm 0.047 + 0.047 - 0.181$	mix event $dN/d\eta = 3.2$
		pp	900	$1.082 \pm 0.068 ^{+0.069}_{-0.206}$	mix event $dN/d\eta=7.7$
_		рр	900	$1.184 \pm 0.092^{+0.067}_{-0.168}$	mix event $dN/d\eta=11.2$
	TASSO [?]	e^+e^-	34	0.727 ± 0.110	
	AMY [?]	e^+e^-	58	$0.730 \pm 0.047 \pm 0.053$	opp. sign
		e^+e^-	58	$0.582 \pm 0.062 \pm 0.016$	mix event
	DELPHI [?]	e^+e^-	91	$0.620 \pm 0.04 \pm 0.20$	opp. sign $+$ mix event
	OPAL [?]	e^+e^-	91	$1.002 \pm 0.016^{+0.023}_{-0.096}$	opp. sign
	L3 [?]	e^+e^-	91	$0.435 \pm 0.010 \pm 0.010$	π^{\pm} MonteCarlo
		e^+e^-	91	$0.309 \pm 0.074 \pm 0.070$	π^0 MonteCarlo
	ALEPH [?]	e^+e^-	91	0.529 ± 0.005	mix event
	ALEPH [?]	e^+e^-	91	0.777 ± 0.005	opp. sign
	H1 [?]	ер	230	$0.680 \pm 0.040^{+0.020}_{-0.050}$	
	ZEUS [?]	ер	230	$0.671 \pm 0.016 \pm 0.030$	opp. sign
	BEBC [?]	$\nu_{\mu}N$	10	$0.800 \pm 0.040 \pm 0.160$	
	EMC [?]	μp	23	0.840 ± 0.030	opp. sign
		μp	23	0.460 ± 0.030	mix event
	E665 [?]	μN	30	0.39 ± 0.02	mix event
	BBCNC[?]	μN	> 10	$0.68 \pm 0.04^{+0.020}_{-0.050}$	opp. sign
		μN	> 10	$0.54 \pm 0.03^{+0.030}_{-0.020}$	mix event
a . c	NOMAD [?]	νΝ	8	$1.010 \pm 0.05^{+0.09}$	opp. sign + mix event
Stefar	io Lacaprara on	behalt of the	e CMS coll	I wo Particle Correlation	ons ICHEP'10, 2

P'10, 22/07/2010

21 / 23

- G. Alexander, "Bose-Einstein and Fermi-Dirac interferometry in particle physics", Rep. Prog. Phys 66 (2003) 481.
- W. Kittel and E.A. De Wolf, "Soft Multihadron Dynamics". World Scientific, Singapore 2005.
- M. Gyulassy, S. K. Kaufmann, and L. W. Wilson, "Pion interferometry of nuclear collisions. I. Theory", Phys. Rev. C 20 (1979) 2267.
- G.A. Kozlov, O. Utyuzh, G. Wilk, and Z. Wlodarczyk, "Some forgotten features of Bose–Einstein Correlations", Phys. Atom. Nucl. 71 (2008) 1502-1504.
- G.A. Kozlov, L. Lovas, S. Tokar, Yu.A. Boudagov and A.N. Sissakian, "Bose–Einstein correlations at LEP and Tevatron energies", Rev. Mod. Phys. hep-ph/0510027.
- M. Biyajima et al., Prog. Theor. Phys. 84 (1990) 931-940. Prog. Theor. Phys. 88 (1992) 157-158.

Backup <u>0000</u>00000000000000000

Bibliography: experiment

- Goldhaber et al., Phys. Rev. 120 (1960) 300.
- MARKII Collaboration, Phys. Rev. D39 (1989) 1.
- TASSO Collaboration, Z. Phys. C30 (1986) 355.
- ALEPH Collaboration, Eur. Phys. J. C36 (2004) 147.
- DELPHI Collaboration, Phys. Lett. B286 (1992) 201.
- L3 Collaboration, Phys. Lett. B524 (2002) 55.
- OPAL Collaboration, Phys. Lett. B559 (2003) 131.
- UA1 Collaboration, Phys. Lett. B226 (1989) 410.
- NA27 Collaboration, Z. Phys. C54 (1992) 21.
- NA22 Collaboration, Z. Phys. C37 (1988) 347.
- ZEUS Collaboration, Acta Phys. Polon. B33 (2002) 3281.
- NOMAD Collaboration, Nucl. Phys. B686 (2004) 3.
- CMS Collaboration, arXiv:1005.3294 ; CMS-QCD-10-003 ; CERN-PH-EP-2010-010
- ALICE Collaboration, arXiv:1007.0516 ;