

CHEP

PARIS 2010

pp collisions at VS=7 TeV with the CMS experiment

> Nuno Leonardo (Purdue University) On Behalf of the CMS Collaboration

> > ICHEP 2010, June 22

the CMS detector

the dimuon spectrum

total data available for physics at CMS has been analyzed

outline

First measurements at 7 TeV

- Inclusive J/ψ cross section and non-prompt fraction
- Y(nS) cross sections and ratio

Perspectives

First fully reconstructed B decays

BPH-PAS 10-002

Jpsi prompt and non-prompt cross section in pp collisions at \sqrt{s} =7TeV

BPH-PAS 10-003

Upsilon production cross section in pp collisions at $\sqrt{s=7\text{TeV}}$

EWK-PAS 10-004

Measurement of CMS luminosity

MUO-PAS 10-002

Performance of muon identification in pp collisions at $\sqrt{s}=7\text{TeV}$

TRK-PAS 10-002

Measurement of tracking efficiency

TRK-PAS 10-004

Measurement of momentum scale and resolution using low mass resonances and cosmic-ray muons

the onia puzzle

- no model explains cross section and polarization simultaneously
- polarization simultaneously
 many models on the market

 Color Singlet Model: LO, NLO, NNLO
 Color Octet Mechanism: NRQCD...
 many more
 measurement of J/ψ and Υ cross sections θ
- and polarization at the LHC desirable
- probe high p_T region not accessible at previous experiments

muon trigger @ cm5

Level 1 Trigger
Hardware based
Muons and Calorimeters

High Level Trigger (L2,L3)

Software based Fast (local) reconstruction in the tracker included

- trigger menu adapting to rapidly evolving instantaneous luminosity
- dimuon paths
 - ightharpoonup startup: L1 and HLT triggers, acceptance down to 0 p_T in forward region
 - L>1E30: several HLT paths turn on, combination of L1 and HLT objects, or HLT + track (in loose J/ψ mass window), unprescaled up to few 1E31
- single muon paths
 - LI and HLT: one muon with p_T > x GeV/c (x=3,5, etc lowest threshold still unprescaled)
- demonstrated ability to collect muons at low p_{T_i} including in the central region

Cross Section overview

$$\frac{d^2\sigma}{dp_Tdy}(pp\to Q\bar{Q}X)\times \mathcal{B}(Q\bar{Q}\to \mu^+\mu^-) = \frac{N_{Q\bar{Q}}}{\int Ldt\cdot A\cdot \epsilon_{trigger}\cdot \epsilon_{reco}\cdot \Delta p_T\Delta y}$$

- N_{QQ} = signal yield in a given p_T,y bin from a 1-d fit to the μμ invariant mass distribution
- $\int Ldt = integrated lumi, uncertainty <math>\mathcal{O}(10\%)$
- A = J/ ψ , Y geometrical and kinematical acceptance (MC)
 - Strongly dependent on production polarization
- Etrigger, Ereco = trigger and reconstruction efficiencies, data driven through Tag and Probe (T&P) method

J/W and Y polarization

acceptance dependent on onia polarization

$$W(\cos\theta,\phi) = \frac{3}{2(3+\lambda_{\theta})} \cdot (1+\lambda_{\theta}\cos^2\theta + \lambda_{\phi}\sin^2\theta\cos2\phi + \lambda_{\theta\phi}\sin2\theta\cos\phi)$$

- the observed polarization depends on
 - the reconstructed dimuon kinematics (p_T, η)
 - the frame: CS (along the collision direction),
 HX (along the onia momentum)
- non-prompt
 - use EvtGen; two body decays: B-factory measurements, multibody decays: pure phase space
- LHC-wide agreement to use isotropic for central value, cross section measured for different polarization scenarios

J/W selection and yield

Selection

- Vertexing of opposite sign dimuon combinations (prob>0.1%)
- High quality track associated to the muon segments: cut on n_{hits} , χ^2 , |dxy|, |dz|
- muon acceptance cuts:

$$|\eta^{\mu}| < 1.3 \quad p_T^{\mu} > 3.3 \text{ GeV/}c$$

 $1.3 < |\eta^{\mu}| < 2.2 \quad p^{\mu} > 2.9 \text{ GeV/}c$
 $2.2 < |\eta^{\mu}| < 2.4 \quad p_T^{\mu} > 0.8 \text{ GeV/}c$

 Yield extraction: Unbinned ML fit to invariant mass: Crystal Ball + exponential

Y selection and yield

- Selection similar to the Jpsi
 - muon acceptance cuts

$$|\eta| < 1.6, \ p_{\rm T} > 3.5 \ {\rm GeV}/c$$

 $1.6 < |\eta| < 2.4, \ p_{\rm T} > 2.5 \ {\rm GeV}/c$

- Restrict to $|y(\Upsilon)| < 2.0$
- Yield extraction: Unbinned ML fit to invariant mass: signal Crystal Ball + linear background
 - Core Resolution common to Y(nS) n=1,2,3, Y(1S) mean floated,
 Δm(Y(2,3S)-Y(1S)) fixed to PDG

$$N(\Upsilon 1(1S)) = 678 \pm 37$$

Mass resolution ~100 MeV/c (|η|<2.4) ~ 67 MeV/c (|η|<1.0)

Systematic uncertainties

- common to large extent between J/ ψ and Υ analyses
- Efficiency
 - T&P using J/ψ, binning effects and factorization assumption using MC $ε(total) = ε(trig|id) × ε(id|track) × ε(track|accepted) ≡ ε_{trig} × ε_{id} × ε_{track}$

- ▶ p_T spectrum shape, FSR, b-fraction, momentum scale and resolution, beam spot position, material effects
- Yield extraction
 - validated with toy MC studies, effect of modified PDF
- b fraction fit
 - residual misalignment, pseudo proper time PDF, resolution function

Y differential cross section

 assuming fully T or L polarizations leads to changes in the cross section by about 20%

$$\sigma(pp \to Y(1S)X) \cdot \mathcal{B}(Y(1S)) \to \mu^+\mu^-) =$$

$$8.3 \pm (0.5)_{\text{stat.}} \pm (0.9)_{\text{lumi.}} \pm (1.0)_{\text{syst.}} \text{ nb}$$

Y(2S) +Y(3S) to Y(1S) ratio
$$0.44 \pm 0.06 \pm 0.05$$

J/W differential cross section

$$BR(J/\psi \to \mu^+\mu^-) \cdot \sigma(pp \to J/\psi + X) =$$

$$(289.1 \pm 16.7 (\text{stat}) \pm 60.1 (\text{syst})) \text{ nb}$$

(measured for $4 < p_T < 30$ GeV, |y| < 2.4)

 largest source of systematic uncertainty: statistical error from T&P on efficiency determination

prompt J/ψ and $\delta \rightarrow J/\psi X$

 measure prompt and non-prompt contributions by a 2-d unbinned LH fit to invariant mass and pseudo proper-decay length

$$\ell_{xy} = rac{L_{xy}^{J/\Psi} \cdot M^{J/\Psi}}{p_T^{J/\Psi}}$$

 pure resolution function (three gaussian) to parameterize l_{xy} for prompt decays, convolution with exponential for non-prompt

prompt J/ψ and $\delta \rightarrow J/\psi X$

 $56.1 \pm 5.5 \text{(stat)} \pm 7.2 \text{(syst)} \text{ nb}$

exclusive beauty and open charm

evolving heavy flavor menu

∫ L.dt

- detector performance
 - alignment, tracker, trigger with J/ψ , Υ
- cross section for bottom, charm and quarkonia
- inclusive J/ψ , exclusive B decays containing J/ψ
- quarkonia studies: polarization, production mechanisms
- bb production, and correlations: $J/\psi + \mu$, μ +jet, jet+jet
- lifetime and properties of b hadrons: B_u , B_d , B_s , B_c , A_b
- B_s oscillations, CP violation
- FCNC rare decays, eg $B \rightarrow \mu\mu$, $\mu\mu$ $K^{(*)}$, $\mu\mu\Phi$, $\mu\mu\gamma$

 $O(nb^{-1})$

O(pb-1)

O(fb⁻¹)

conclusions

presented first CMS onia measurements from LHC 2010 Run at 7 TeV

- differential cross section for J/ψ and Υ
- \rightarrow Y(2S+3S)/Y(1S) ratio
- b fraction production using non prompt J/Ψ
- proof of excellent performance of LHC and CMS
- some measurements already systematics limited, but large improvements expected from fast rise of integrated luminosity and improved understanding of the detector
- rich heavy flavor program at CMS just started
- · stay tuned!

J/W systematics

(relative uncertainties on the corrected yields)

$p_T^{J/\psi}$ (GeV/c)	Statistics	FSR	p_{T} calibration	B-frac.	non-prompt polar.	Muon effic.	ρ	Fit function
				y < 1.4				
4 - 6	7.2	2.0	3.1	0.1	0.0	11.1	4.6	6.1
6 - 8	5.2	2.0	2.4	0.2	0.1	7.0	7.0	0.2
8 - 10	5.3	1.6 1.4		0.3	0.1	9.9	7.1	0.6
10 - 30	4.7	0.9	0.7	0.4	0.2	10.8	1.2	1.0
			1.4	< y <1	2.4			
0 - 1	6.4	0.8	0.3	0.1	0.0	10.5	12.6	6.5
1 - 1.5	9.5	0.7	0.3	0.0	0.0	11.4	28.2	8.3
1.5 - 2	6.1	0.4	0.5	0.0	0.0	11.2	22.7	6.1
2 - 3	4.3	0.2	0.9	0.0	0.0	10.0	5.6	2.4
3 - 4	3.9	0.6	0.7	0.1	0.0	9.7	5.9	6.8
4 - 6	5.6	0.8	0.5	0.1	0.0	10.6	9.3	5.7
6 - 8	4.3	0.6	0.4	0.1	0.0	9.4	6.8	8.3
8 - 10	5.8	0.5	0.2	0.2	0.1	13.1	4.2	1.0
10 - 30	7.8	0.2	0.2	0.2	0.1	11.8	0.6	2.1

Y systematics

(relative uncertainties on the corrected yields)

Δp_{T}	\mathcal{A}^{Y}	$\varepsilon_{\mathrm{muid}}$	$\varepsilon_{\mathrm{trig}}$	$\varepsilon_{\mathrm{trk}}$	FSR	$S p_{\mathrm{T}}$	T	TJ/ψ	PDF	Σ
Y(1S)						10 12 12 1 20	80 80	200	23 6	
0-2	0.5	9.5	3.4	0.6	3.5	0.2	2.1	2.0	0.4	11.1
2-3	0.5	10.0	3.5	0.6	4.1	0.6	2.1	1.4	0.4	11.7
3-5	0.6	10.0	0.5	0.6	3.7	0.5	2.0	1.3	0.4	11.0
5-8	0.6	11.0	6.2	0.6	3.2	0.6	1.8	2.0	0.4	13.3
8-12	0.6	10.3	6.5	0.6	2.6	0.8	2.2	2.9	0.4	13.1
12-20	0.4	13.3	14.0	0.7	2.3	1.6	2.2	4.3	0.4	20.1
0-20	0.6	10.4	5.1	0.6	3.4	0.5	2.0	2.0	0.4	12.5

