ICHEP 2010

Measurement of the inclusive b production cross section in pp collisions at $\sqrt{s} = 7$ TeV

Lea Caminada

(ETH|PSI)

on behalf of the CMS collaboration

July 22, 2010

Heavy Quark Production

- Heavy Quark production is an important process for the study of QCD
- Previous measurements at other colliders (Tevatron, HERA, LEP, ...)
 - reasonable agreement with NLL/NLO
 QCD predictions
 - sizeable uncertainties
- Large bb production cross section in pp collisions at √s = 7 TeV at LHC
 - provides access to new regions in phase space
 - b events present important background to many searches
- b production at LHC
 - LO: Flavor creation (FCR)
 - Large NLO contributions: Flavor excitation (FEX) and Gluon splitting (GSP)

b Identification at CMS

- Use of distinct properties of b quarks
 - long lifetime, large mass, hard fragmentation
- Semi-leptonic and hadronic decays
- CMS very well suited for b physics due to excellent tracking and muon detectors
 - Pixel detector for precise reconstruction of secondary vertices
 - Muon system with ability to trigger on low p_T muons ($p_T > 3$ GeV)

CMS Inclusive b Production Results

 Based on LHC data collected by the CMS experiment between March and July 2010

• CMS PAS BPH-10-007: Open beauty production cross section with muons in pp collisions at $\sqrt{s} = 7$ TeV

• CMS PAS BPH-10-009: Measurement of the inclusive b-jet production in pp collisions at $\sqrt{s} = 7$ TeV

→ Poster by S. Honc: "Inclusive b-jet production measurement on early CMS data"

 Two independent measurements with their own systematic uncertainties and covering different regions in phase space Open b Production with Muons

Semi-leptonic b decays into muons

- Single muon trigger ($p_T > 3 \text{ GeV}$)
- Muon $p_T > 6$ GeV, $|\eta| < 2.1$ (Efficiency: trigger ~82%, reconstruction ~97%)
- Signal events discriminated from background events based on muon p_T^{rel} (on average harder in b events due to larger b mass)
- b direction reconstructed from tracks only
 - \rightarrow Tracks clustered by anti-k_T (R=0.5) algorithm
 - → very good angular resolution (2-8%)
 - \rightarrow Efficiency of 74% to almost 100% depending on muon p_T
- Measurement of total cross section and differential cross section as a function of muon p_T and pseudorapidity with an integrated luminosity of $L=8.1~\text{nb}^{-1}$

Cross Section Measurement

Binned maximum likelihood fit to measured p_T^{rel} distribution

- b and c templates from MC
 (signal validated in b-enriched data)
- Data-driven template for muons from light quarks and gluons (measurement of in-flight decays)
- Background combined in fit
- Different templates for each bin in muon p_T and η

$$N_b^{data} = f_b^{fit} N^{data}$$

$$\sigma \equiv \sigma(pp \to b\overline{b} + X \to \mu + X', p_{\perp}^{\mu} > 6 \,\text{GeV}, |\eta^{\mu}| < 2.1) = \frac{N_b^{data}}{\mathcal{L}\varepsilon}$$

- $N_b^{\rm data}$: number of b events in data
- ε : trigger and reconstruction efficiency
- \mathcal{L} : integrated luminosity

b Cross Section with Muons at $\sqrt{s} = 7 \text{ TeV}$

Visible b cross section

$$\sigma = (1.48 \pm 0.04_{\rm stat} \pm 0.22_{\rm syst} \pm 0.16_{\rm lumi}) \, \mu {
m b}$$
 $\sigma_{
m MC@NLO} = [0.84^{+0.36}_{-0.19}({
m scale}) \pm 0.08 (m_b) \pm 0.04 ({
m pdf})] \, \mu {
m b}$
 $(\mu_F = \mu_R = p_T)$

Differential b cross section

• Measurement in agreement with MC@NLO for muon p_T > 12 GeV, while data is above the prediction in the central region at low p_T

Systematic Uncertainties

- Systematic uncertainty dominated by the description of the light quark background template and the underlying event as well as the luminosity uncertainty
- Modelling of b production and decay are better understood and have less impact

source	uncertainty
Trigger	3–5 %
Muon reconstruction	3 %
Tracking efficiency	2 %
Background template shape uncertainty	1–10 %
Background composition	3–6 %
Production mechanism	2–5 %
Fragmentation	1-4%
Decay	3 %
MC statistics	1-4%
Underlying Event	10 %
Luminosity	11 %
total	16–20 %

Inclusive b-jet Production

- Measurement of the inclusive b-jet cross section and ratio to the inclusive jet production with L = 60 nb⁻¹
- · Events collected with a combination of minimum bias and jet triggers
- Jets (18 < p_T < 300 GeV, |y| < 2) reconstructed by anti- k_T algorithm (R=0.5) using tracker and calorimeter information (Particle Flow) [CMS PAS PFT-10-002]
- b-tagging based on secondary vertex reconstruction
 - Vertex with at least 3 tracks and large flight length significance
 - b-tagging efficiency from MC, verified in subsample by measurement of scale factor using $p_{\rm T}^{\rm rel}$ $\epsilon_b^{Data}/\epsilon_b^{MC} = 0.98 \pm 0.08 \pm 0.18$
 - Mistag rate from MC, constrained by data-driven study using negative-tag discriminator

b-tagged Sample Purity

- Estimated using two complementary approaches
 - 1) Data-based: Fit to secondary vertex mass

2) MC-based:
$$f_b = \frac{F_b \epsilon_b}{F_b \epsilon_b + F_c \epsilon_c + F_l \epsilon_l}$$
 (F: flavor fraction)

- Good agreement between data and MC: $Data/MC = 0.976 \pm 0.022$
- Central values taken from MC for proper treatment of \boldsymbol{p}_T and \boldsymbol{y} dependence

b-Jet Cross Section at √s = 7 TeV

b-jet p₋ (GeV)

b-jet p_T (GeV)

Ratio to Inclusive Jet Cross Section

- Inclusive jet cross section measurement → Talk by M. Voutilainen [CMS PAS QCD-10-011]
- Measurement of ratio reduces experimental uncertainty from jet energy reconstruction and luminosity
- Fit of measured ratio of data and PYTHIA for 30 < p_T < 150 GeV and |y| < 2 yields scale factor of $0.99\pm0.02(stat)\pm0.21(syst)$

Conclusions

- Presented the first measurements of the inclusive b production at $\sqrt{s} = 7 \text{ TeV}$
- Open b production with muons:
 - Measurement for muon p_T = 6-30 GeV, $|\eta|$ < 2.1 with statistical error of 5-20% and systematic uncertainty of 16-20%
 - Good agreement with MC@NLO at muon p_T > 12 GeV, while data are above the prediction in the central region at low p_T
- Inclusive b-jet production:
 - Measurement for jet $p_T = 18-300 \text{ GeV}$, |y| < 2
 - Overall good agreement with PYTHIA within ~2% statistical and 21% systematic uncertainty
 - Reasonable agreement with MC@NLO for overall cross section, but shape differences in $p_{\scriptscriptstyle T}$ and y

Backup

CMS Detector

CMS Muon System

Muon Trigger Efficiency

Fraction of pions, kaons and protons mis-identified as muons

Jet Energy Correction and Jet Energy Resolution

Jet Trigger

- Minimum bias and single jet triggers $p_T > 6, 15, 30 \text{ GeV}$
- Combined exclusively at ~99% turn-on

Unfolding → Talk by M. Voutilainen

• Ansatz method to correct jet p_T back to particle level

Phenomenological power law motivated by parton model (Feynman, Field, Fox), extended at the Tevatron and updated at CMS for low p_T and

b-jets

$$f(p_T) = N_0 p_T^{-\alpha} \left(1 - \frac{2p_T \cosh(y_{\min})}{\sqrt{s}} \right)^{\beta} \underbrace{\exp(-\gamma/p_T)}_{\text{low } p_T \text{ and } b-\text{jets}}_{\text{new}}$$

$$F(p_{\mathrm{T}}) = \int_{0}^{\infty} f(p_{\mathrm{T}}') R(p_{\mathrm{T}}' - p_{\mathrm{T}}; \sigma) dp_{\mathrm{T}}'$$
 $R(p_{\mathrm{T}}' - p_{\mathrm{T}}; \sigma)$: smearing function
 $C_{\mathrm{res}} = f(p_{\mathrm{T}}) / F(p_{\mathrm{T}})$

B tagging: Secondary Vertex Properties and Discriminator

B tagging Efficiency

Tagger+Operating Point	$\epsilon_b^{ m data}$	$\epsilon_b^{ ext{MC}}$	SF_b
SSVHPT	0.203 ± 0.015	0.207 ± 0.002	$0.98 \pm 0.08 \pm 0.18$

- 12% systematic uncertainty derived from study of jet p_T and η modelling (4-8%), muon selection (2-8%), jet flavor assignment (2%), pile-up (3%), shape of light quark background (3-5%)
- Additional systematic uncertainty of 15% to effects not yet studied(p_T^{rel} shape for b and non-b jets, fragmentation, effect of trigger, jet energy scale uncertainty)