

Geoffrey Mills

Los Alamos National Laboratory

For the MiniBooNE Collaboration

ICHEP Paris, France XXV Juillet, MMX

- 1. Motivation
 - MiniBooNE Appearance Results
- 3. Comparison of LSND and MiniBooNE
- 4. Future Possibilities
- 5. Conclusions

Motivation....

Neutrino Oscillations

- The oscillation patterns between the 3 known active neutrino species have been demonstrated by a number of experiments over the last two decades:
 - SNO, Kamland
 - Super-K, K2K, MINOS
- Armed with that knowledge, measurements of neutrino behavior outside the standard 3 generations of active neutrinos indicate new physics:
 - LSND indicates that new physics may be operating
- Interpretations of such a non-standard result probe some deep theoretical issues, for example:
 - Light sterile neutrinos, neutrino decays, CP and/or CPT violation, Lorentz invariance, Extra dimensions

The investigation of neutrino oscillations at the <1% level is unique in its physics reach

Motivation....

Excess Events from LSND still remain:

- Solution LSND found an excess of $\overline{
 u}_{\rm e}$ in $\overline{
 u}_{\mu}$ beam
- Signature: Cerenkov light from e⁺ with delayed n-capture (2.2 MeV)
- \blacksquare Excess: $87.9 \pm 22.4 \pm 6.0 (3.8\sigma)$
- The data was analysed under a two neutrino mixing hypothesis*

$$P(\overline{\nu}_{\mu} \to \overline{\nu}_{e}) = \sin^{2}(2\theta) \sin^{2}\left(\frac{1.27 L \Delta m^{2}}{E}\right)$$
$$= 0.245 \pm 0.067 \pm 0.045 \%$$

KARMEN at a distance of 17 meters saw no evidence for oscillations \rightarrow low Δm^2

*3 active + ≥2 sterile vs needed to fit all appearance and disappearance

MiniBooNE looks for an excess of electron neutrino events in a predominantly muon neutrino beam

Data stability

• Very stable throughout the run

MiniBooNE Detects Cherenkov Light

Pattern of Cerenkov Light Gives Event Type

The most important types of neutrino events in the oscillation search:

Background Muons (or charged pions):

Produced in most CC events. Usually 2 or more subevents or exiting through veto.

Signal and Background Electrons (or single photon): Tag for $: \mathbf{v}_{\mu} \rightarrow \mathbf{v}_{e}$ CCQE signal. 1 subevent

Background π^0 s: Can form a background if one photon is weak or exits tank. In NC case, 1 subevent.

Benchmark Reaction: Charged Current Quasi Elastic (CCQE)

Normalizes our (flux x cross section)

We adjust the parameters of a Fermi Gas model to match our observed Q² Distribution.

Fermi Gas Model describes CCQE

$$\nu_{\mu}$$
 data well

$$M_{A,eff} = 1.23 + -0.20 \text{ GeV}$$

 $\alpha = 1.019 + -0.011$

Also used to model V_e and $\overline{V_e}$ interactions

Antineutrino mode events

Reconstruction of NC π^0 events

MiniBooNE Oscillation Searches

Neutrino mode v_e appearance:

$$V_{\mu} \rightarrow V_{e}$$

- Seach for excess v_e events above expected background
- Pure sample of neutrinos
- Antineutrino mode $\overline{\mathbf{v}}_{\mathsf{e}}$ appearance: $\overline{oldsymbol{\mathcal{V}}}_{\mu} \longrightarrow \overline{oldsymbol{\mathcal{V}}}_{\epsilon}$
 - Search for excess \overline{v}_e events above expected background
 - Contamination from large amount of in v_e antineutrino mode which creates ambiguities in the analysis, e.g. how does one treat the observed low energy excess seen in neutrino mode?

MiniBooNE v_e and \overline{v}_e Data

v Mode

v Mode

v_e Background Uncertainties

Uncertainty (%)	200-475MeV	475-1100MeV
π+	0.4	0.9
π	3	2.3
K ⁺	2.2	4.7
K-	0.5	1.2
K ⁰	1.7	5.4
Target and beam models	1.7	3
Cross sections	6.5	13
$NC \pi^0$ yield	1.5	1.3
Hadronic interactions	0.4	0.2
Dirt	1.6	0.7
Electronics & DAQ model	7	2
Optical Model	8	3.7
Total	13.4%	16.0%

- Unconstrained $\bar{\nu}_{\rm e}$ background uncertainties
- Propagate
 input
 uncertainties
 from either
 MiniBooNE
 measurement
 or external
 data

(v_u constrained error ~10%)

Model Independent Views of Oscillations Why L/E?

• Neutrino oscillations usually appear as simple trigonometric functions of L/E, e.g.:

$$P(v_{\alpha} \rightarrow v_{\beta}) = \delta_{\alpha\beta} - 4\sum_{i>j}^{N} \Re\left(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}\right) \sin^{2}(\Delta m_{ij}^{2} \frac{L}{E}) + 2\sum_{i>j}^{N} \Im\left(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}\right) \sin(2\Delta m_{ij}^{2} \frac{L}{E})$$
(antineutrinos : $U \rightarrow U^{*}$)

$$\left(\Delta m^2 \frac{L}{E_v}\right)$$
 is just the phase difference of the two states

- Experiments can be compared directly to each other in L/E to look for the interference of mass states and oscillation effects
- •The next graphs show P(osc) vs L/E:

$$P(\alpha \rightarrow \beta) = \frac{\text{observed event excess}}{\text{number expected for full transmutation of } v_{\mu} \text{ or } \overline{v}_{\mu}}$$

 $P(\alpha \rightarrow \beta) = \frac{\text{observed event excess}}{\text{number expected for full transmutation of } v_{\mu} \text{ or } \overline{v}_{\mu}}$

Direct MiniBooNE-LSND Comparison of $\overline{\nu}$ Data

Oscillation Fit Method

Maximum likelihood fit:

$$-2\ln(L) = (x_1 - \mu_1, ...x_n - \mu_n)M^{-1}(x_1 - \mu_1, ...x_n - \mu_n)^T + \ln(|M|)$$

- Simultaneously fit
 - v_e CCQE sample
 - High statistics ν_{μ} CCQE sample
- v_u CCQE sample constrains many of the uncertainties:

Cross section uncertainties

Testing the Null Hypothesis in v-mode

- Model independent, uses only the background estimate and constrains $\nu_{\rm e}$ backgrounds to $\nu_{\rm u}$ event rate.
- Generate the χ^2 distribution of fake experiments thrown from background-only error matrix (null)

```
P_{null}(\text{MB excess}) \sim 1.6\% (full energy range)

P_{null}(\text{MB excess}) \sim 3.0\% (E>475)

P_{null}(\text{MB excess}) \sim 0.5\% (signal v<sub>e</sub> bins only)
```


Antineutrino mode MB results Full Energy Range

- Results for 5.66E20 POT
- Maximum likelihood fit in simple 2 neutrino model
- Null excluded at 99.5% with respect to the two neutrino oscillation fit
- $P_{\chi 2}$ (best fit)= 17.1%

2 neutrino fit excluding low energy region

(E>475 avoids question of low energy excess in nu-mode)

Antineutrino mode MB results for E>475 MeV

(E>475 avoids question of low energy excess in nu-mode)

- Results for 5.66E20 POT
- Maximum likelihood fit for simple two neutrino model
- Null excluded at 99.4% with respect to the two neutrino oscillation fit.
- P_{χ_2} (best fit)= 20.5%
- Signal $\nu_{\rm e}$ bins only:
 - $P_{\chi 2}(\text{null}) = 0.5\%$
 - $P_{\chi 2}$ (best fit)= ~10%

Submitted to PRL arXiv: 1007.5510

Conclusions

- Significant ν_e (~3 σ) and $\overline{\nu}_e$ (~2.5 σ) excesses above background are emerging in both neutrino mode and antineutrino mode in MiniBooNE
- The two modes do not appear to be consistent with a simple two flavor neutrino model
- Neutrino mode systematic errors dominate (near detector?)
- Antineutrino mode statistical errors dominate (more data?)
- MiniBooNE plans to accumulate more data until the goal of 10²¹ protons on target is reached

Long-Baseline News, May 2010:

" *** LSND effect rises from the dead... "

BACKUP

Future sensitivity in v Data

- MiniBooNE approved for a total of 1x10²¹ POT
- Potential 3σ exclusion of null point assuming best fit signal
- Combined analysis of v_e and \overline{v}_e

Protons on Target

Outlook

- Additional experiments under consideration or design:
 - Moving MiniBooNE to a near position following the $\overline{
 u}$ run
 - High statistics in a 1 year run
 - MicroBooNE
 - 70 ton Liquid Argon TPC
 - Good electron-gamma separation
 - ICARUS @PS
 - 600 ton Liquid Argon TPC running at Grand Sasso
 - Move to CERN PS beam and augment with small near detector (~<100 tons)
 - Good electron-photon separation
 - Repeat LSND:
 - SNS (OscSNS) is running now at 1 MW (neutrinos are going to waste as we speak!!)

Motivation....

Cosmology Fits for the Number of Sterile Neutrinos (J. Hamann, et. al. arXiv:1006.5276)

Meson production at the Proton Target

Pions(+/-):

- MiniBooNE members joined the HARP collaboration
 - 8 GeV proton beam
 - → 5% Beryllium target
- Spline fits were used to parameterize the data.

Kaons:

- Kaon data taken on multiple targets in 10-24 GeV range
- Fit to world data using Feynman scaling
- 30% overall uncertainty assessed

Backgrounds: Order($\alpha_{QED} \times NC$), single photon FS

Radiative Delta Decay (constrained by $NC\pi^0$)

Axial Anomaly (small)

Other PCAC (small)

All order (G² α_s) Z_A^0 $\frac{v}{v}$ $\frac{v'}{v'}$

 $v - \overline{v}$ comparison disfavors neutral current hypothesis since radiative Δ is constrained by $NC\pi^0$

MINOS Antineutrino Disappearance

Low statistics but results hint at possible new effect in \overline{v}_{μ}

Direct MiniBooNE-LSND Comparison of $\overline{\nu}$ Data

5.66e20 Protons on Target			
	200-475	475-1250	
m [±]	13.45	31.39	
K [±]	8.15	18.61	ntrir
K ⁰	5.13	21.2	ntrinsic
Other v _e	1.26	2.05	e<
NC π ⁰	41.58	12.57	
Δ→Νγ	12.39	3.37	
dirt	6.16	2.63	Vis-ID
v _m CCQE	4.3	2.04	D
Other v _m	7.03	4.22	
Total	99.45	98.08	
		30	,

Phys. Rev. D79, 072002 (2009)

- Intrinsic $\overline{\nu}_{\rm e} \& \nu_{\rm e}$
 - External measurements HARP p+Be for π^{\pm}

- Sanford-Wang fits to world K⁺/K⁰ data
- MiniBooNE data constrained

Phys. Rev. D81, 013005 (2010)

3+1 Global Fit to World Antineutrino Data

G. Karagiorgi et al., arXiv:0906.1997

Best 3+1 Fit: $\Delta m_{41}^2 = 0.915 \text{ eV}^2$ $\sin^2 2\theta_{\mu e} = 0.0043$ $\chi^2 = 87.9/103 \text{ DOF}$ Prob. = 86%

Predicts $\overline{\nu_{\mu}} \& \overline{\nu_{e}}$ disappearance of $\sin^2 2\theta_{\mu\mu} \sim 35\%$ and $\sin^2 2\theta_{ee} \sim 4.3\%$

3+1 Global Fit to World Antineutrino Data w/o LSND

3+1 Global Fit to World Neutrino Data

G. Karagiorgi et al., arXiv:0906.1997

Best 3+1 Fit: $\Delta m_{41}^2 = 0.19 \text{ eV}^2$ $\sin^2 2\theta_{\mu e} = 0.031$ $\chi^2 = 90.5/90 \text{ DOF}$ Prob. = 46%

Predicts $v_{\mu} \& v_{e}$ disappearance of $\sin^{2}2\theta_{\mu\mu} \sim 3.1\%$ and $\sin^{2}2\theta_{ee} \sim 3.4\%$

LSND interpretation: More complicated Oscillations (e.g. 3+2)

- Sterile neutrino models
 - → 3+2 → next minimal
 extension to 3+1 models
- •2 independent Δm^2
- •4 mixing parameters
- •1 Dirac CP phase which allows difference between neutrinos and antineutrinos

Oscillation probability:

$$P(\stackrel{(-)}{v_{\mu}} \rightarrow \stackrel{(-)}{v_{e}}) = 4|U_{\mu 4}|^{2}|U_{e 4}|^{2}sin^{2}x_{41} + 4|U_{\mu 5}|^{2}|U_{e 5}|^{2}sin^{2}x_{51} + + 8|U_{\mu 5}||U_{e 5}||U_{\mu 4}||U_{e 4}|sinx_{41}sinx_{51}cos(x_{54} \pm \varphi_{45})$$

Are LSND and MiniBooNE Consistent with Oscillations?

My own attempts to reconcile Data:

"low-low" solution

$$A_{CP} = ad\frac{M}{2}$$

In appearance, yes... $\frac{L}{E_{\nu}} \left(\frac{m}{\text{MeV}} \right)$

$$\frac{L}{E_{\nu}} \left(\frac{m}{\text{MeV}} \right)$$

Resolving the MiniBooNE Low Energy Excess

- ➤ Moving the MiniBooNE detector to 200m (~ 40 tons without oil)
 - ➤ Letter of Intent: arXiv:0910.2698
 - ➤ Accumulate a sufficient data sample in < 1 year
 - ➤ will dramatically reduce systematic errors (low energy excess is ~ 6 sigma significance with statistical errors only.
 - ➤ Can study L dependence of excess: backgrounds scale as 1/L**2, oscillation signal as sin²(L/E), and decay as L/E.

➤ MicroBooNE:

- is a 70 ton liquid argon time projection chamber in the Fermilab BNB
- > can differentiate single gamma-rays from electrons
- Likely to be too small for anti-neutrino running....

> CERN: ICARUS @PS

- Discussed in arXiv:0909.0355v3
- 600T Far detector exists @ Grand Sasso, ~ 100 T near detector needed
- Use old PS neutrino beam line and CDHS Hall

MicroBooNE

- 70 tons Liquid Argon TPC
- Good photon-electron separation
- Replaces MiniBooNE (850 ton)
- Similar sensitivity to MiniBooNE
- Would require ~ >6 years of running

Options for Near BooNE Detector

- Transport existing MiniBooNE detector (~80 tons) to new location 150-200 meters from BNB target (~4M\$)
- Dismantle existing MiniBooNE detector and construct a new detector at 150-200 meters. (~4M\$)
- Construct brand new detector at 150-200 meters (~8M \$)

New Location at 200 meters from BNB Target

Vu Charged Current Event Rates Near and Far

Quasi elastic event rates

Sensitivity with Near/Far Comparison

- Near/Far comparison sensitivity
 - ➤ Near location at 200 meter
 - \checkmark 1x10²⁰ pot ~1 yr of running
 - > Full systematic error analysis
 - √Flux, cross section, detector response
 - > 90%CL becomes ~ 4 σ contour

Antineutrino Disappearance Seinsitivity with Detector at 200 Meters

