Optimization of neutrino fluxes for european Super-Beams

Prepared for ICHEP2010. 35th International Conference on High Energy Physics. Paris, 22-28 July 2010

1) Introduction

• LAGUNA: feasibility of a European next-generation giant underground detectors for p-decay, astrophysics and v-physics. • EUROv: cost and physics performance comparison among three possible future facilities in EU CERN-Fréjus Super Beam \Leftrightarrow Neutrino Factory $\Leftrightarrow \beta$ -beam with high-Q isotopes.

2) Goals

• Optimization of Super-Beams from CERN to the LAGUNA sites. Neutrino oscillation physics input for site prioritization.

3) Considered options

High Energy Super Beam L>130 Km

• "High-Power PS2" $E_{p} = 50 \text{ GeV}, 3.10^{21} \text{ pot/y}.$ [1] • 100 kton Liquid Argon TPC (GLACIER). Low Energy Super Beam L=130 km

• "High-Power SPL" $E_p = 4.5 \text{ GeV}, 5.6 \cdot 10^{22} \text{ pot/y.}$ [2]

• 440 kton Water Cherenkov (MEMPHYS).

5) Fluxes simulation with GEANT4: benchmarking

Comparison with HARP data

GEANT4 QGSP model can reproduce reasonably well the cross sections on carbon targets at 5 GeV in the forward region. Reweighting to the data does not alter significantly the neutrino fluxes.

Comparison with other simulations

A. Longhin

IRFU CEA Saclay

EUROv and LAGUNA

www.euronu.org

irfu

saclay

 $\lambda_{99}(\delta)d\delta$

NOVA setup: E = 120 GeV, L=810 Km, 10.8 Km off axis. GEANT4 used for the primary proton interactions. Completely independent simulation. Some approximations in reproducing the original geometry. Fair Agreement.

www.laguna-science.eu

Reference fluxes from NoVA public pages http://enrico1.physics.indiana.edu/messier/off-axis/spectro

4) **GEANT4** neutrino fluxes simulation

New. GEANT4 framework from a GEANT3 code by A.Cazes-J.E.Campagne.

- Probability weighting techniques applied to GEANT4 generated decays.
- Flexible, easy interface for horn geometry. On/off axis beams.

p-target interactions: GEANT4 or supplying input from external generators (i.e. FLUKA).

Sensitivity:

simplified

LAr TPC.

detailed description of

efficiencies for Water

Cherenkov based on

SuperKamiokande

algorithms, more

parametrization for

Limit

Best configuration:

 $\lambda = 0.87$

 $r_{tun} = 2 m$

_ = 25 m

backgrounds and

6) **Beamline optimization strategy**

- Parametric model of horns
- Random sampling of parameters
- Ranking of configurations based on achievable θ_{13} limits

Figure of merit $\lambda \equiv \theta_{13}$ sensitivity limit at 99% C.L. averaged over the δ_{CP} phase

7) Optimized beams performance

v fluxes at 100 Km

Optimized fluxes tend to "sit" on the respective 1st oscillation maximum E (arrows) as expected.

Results

 Reliable simulation of neutrino beams based on modern software.

 Powerful optimization procedure based on the sensitivity to θ_{13} averaged over all possible values for the δ_{CP} phase.

 Physics performance of future scenarios compared with an homogeneous set of tools.

Outlook

- Refine optimization of H.E-Super Beam
- Consider mass hierarchy and CP violation potential
- Possibly include 50 kton L-scintillator option (LENA)

References [1] hep-ph/1003.1921v1 [2] hep-ex/0411062v1, hep-ph/0603172

8) Procedure for Low-E Super Beam optimization (E = 4.5 GeV, L= 130 Km)

Graphite target: L = 78 cm, r = 1.5 cm.

Well suited for long targets Good suppression of wrong charge pion dangerous in "-" focusing mode due to v_{a} from $\pi^{+} \rightarrow \mu^{+} \rightarrow e^{+} v_{a} \overline{v_{\mu}}$.

value

8.4) New iteration in a restricted space of parameters after which the best horn shape was frozen

best configuration (i.e. giving the minimum λ)

8.5) Decay tunnel tuning

Scan on tunnel length (L_{tun}) and radius (r_{tun}) aver99:Ltun {aver99!=0} Rtun:Ltun:aver99 {aver99!=0}

tun

aver99:Rtun {aver99!=0}

λas

color code

8.6) Converging to better limits

~30 % improvement w.r.t. a generic initial configuration

• restricted intervals for effective parameters \rightarrow horn with min λ

L [15-35] m r [1.5-4.5] m

8.7) v fluxes for the optimized setup

Composition of v_{p} flux (+ focusing) Mainly µ decays, small contribution from K.

9) Procedure for High Energy Super Beam optimization ($E_{1} = 50$ GeV, L: 630 \div 2300 Km)

radius.

9.1) Focusing scheme

Parabolic horn + reflector. Parametrized analytically. 7 shape parameters a,b,c,d,a',b',c'.

Starting point: take horn shape used in the NuMI beam. i = 200 kA Tunnel with L = 300 m, r = 1.5 m.Graphite target: L = 1 m, r = 2 mm.

