

Thanks to the (many) experts who kindly provided me (consciously or not) with updated information and slides:

R.Aleksan, B.Barish, R.Bailey, M.Biagini, O.Boine-Frankenheim, O.Bruning, E.Colby, W.Fischer, B.Foster, M.Harrison, S.Holmes, R.Garoby, M.Giorgi, G.Hanson, M.Izawaki, J.Jowett, M.Klein, JP.Koutchouk, P.Lebrun, V.Litvinenko, K.Long, M.Masuzawa, T.Roser, L.Rossi, D.Schulte, G.Trubnikov, B.Tschirhardt, K.Yokoya, A.Wagner, F.Zimmermann, Taking advantage of (but not summarising) Session 14 (24/07/10) "Future Machines and Projects" Co-chairs: K.INSOO, M.SHOCHET, S.STAPNES

**B.BARISH:** The Global Design Effort for the International Linear Collider **B.FOSTER:** Governance of the International Linear Collider Project D.SCHULTE: CLIC Progress and Status E.COLBY: Present Limits and Future Prospects for Dielectric Acceleration P.KOOIJMAN: Status of KM3NeT M.GIORGI: The SuperB Project M.IWASAKI: The SuperKEKB accelerator status G.TRUBNIKOV: The heavy ion collider project NICA/MPD at JINR/Dubna M.KLEIN: The Large Hadron Electron Collider (LHeC) Project **B.TSCHIRHART:** Project-X at Fermilab K.LONG: The International Design Study for the Neutrino Factory G.HANSON: The Research and Development Program towards an Energy-Frontier Muon Collider **R.BAILEY: LHC machine upgrades** 

#### **Conclusion: Personal Remarks**

#### Large number of ambitious accelerator projects with promising performances in the near (and short term) future

- Towards energy and/or luminosity frontiers
- Complementary aspects of various particles species

#### High Energy Physics requirements extremely demanding with challenging parameters

- Entering into the new territories: TERASCALE
- High Energy or/and High (Integrated) Luminosity
- High performance, high availability, long lifetime, luminosity leveling....

### Creative and Strong R&D

New projects more and more challenging:

- Larger, more powerful, more expensive not an option
- Technology above present standard
- Innovative ideas and breakthrough on novel technologies = key for HEP adventure
  - Innovation and imagination = a MUST!
  - Previous presentation

## Aggressive R&D imperative

- Beam and Technology related
- Cost and power consumption mitigation
- Ambitious Test Facilities to address feasibility

#### **Global Collaborations**

More and more time and (M&P) resources required from first ideas to project proposal

- Launch R&D early,
- Explore ALL possible options of schemes and technologies (anticipating future Physics requests)
- Realistic status & schedule estimates:

preserve credibility & make reasonable plans

Global Collaboration mandatory from the R&D phase to construction and operation

- Best use of limited resources & available expertise
- Inspired from successful collaborations on Detectors

## Plea for a Global Coordination (initiated by ICFA)

- Global strategy of new accelerator projects in truly world-wide collaboration:
  - Defining all various Projects and Technology options worth exploring
  - Global teams made of world-wide experts taking advantage of synergies to address common issues (generic R&D) of various projects
  - Preparing together plethora of project proposals to cover Physics Landscape: ready for window opportunity
  - Collaborative/Competition: Experts in Collaboration, Technology & Projects options in Competition
  - Joining resources on (few) selected projects

# Conclusion

# Future HEP Projects (beyond LHC) will be: GLOBAL!

**Collaborations!** 

Innovative ideas and technology breakthroughs R&D, R&D , R&D

**Globally Coordinated Strategy** 

# or will not be!





## Synergies between projects: Generic R&D

|                                          |                | Test            | Protons  |       |       | lons  |         |      | Electron-Hadrons |       |      | <b>B</b> Factories |        | Linear Colliders |           |          |          | Muor     | Muons & Neutrinos |         |  |
|------------------------------------------|----------------|-----------------|----------|-------|-------|-------|---------|------|------------------|-------|------|--------------------|--------|------------------|-----------|----------|----------|----------|-------------------|---------|--|
| R&D/Projects                             |                | n cor           |          |       | I LIC | NICA  |         |      | I HoC            |       | ELIC | Super              | SuporR |                  | cuc       | PFWA     | Dielec-  | Muon     | Neutrin           | Project |  |
|                                          |                | Facilities      | nt-th¢   |       | LITIC | NICA  | KHIC II | FAIN | LITEC            | ennic | ELIC | KEKB               | Superb | ile              | CLIC      | LWFA     | tric Acc | Collider | Factory           | X       |  |
|                                          | Coordination   |                 | CERN     | CERN  | CERN  | DUBNA | BNL     | GSI  | CERN             | BNL   | JLAB | KEK                | LNF    | GDE              | CLIC coll | SLAC/LBI | SLAC?    | MAP      | NF Coll           | FNAL    |  |
| Electron cloud                           | Cornell?       | CESR-TA         | Х        | X     |       | Х     | Х       |      | X                | Х     |      | Х                  | Х      | Х                | Х         |          |          |          |                   | X       |  |
| SC magnets (High Field, Fast Cycling,    | Magnet R&D     | CERN, FNAL,     | ur       |       | υг    | СГ    |         | 50   |                  |       |      | ше                 | ur     |                  | 14/       |          |          |          |                   |         |  |
| Super-Ferric, Wigglers)                  | network?       | GSI             | пг       | пг/гС | пг    | Эг    |         | rt   |                  |       |      | Πr                 | пг     |                  | VV        |          |          |          |                   |         |  |
| Super-Conducting RF                      | ESLA Tech coll | FLASH, NML, ST  | IF, XFEL |       |       |       | Х       |      | X                | X     |      | Х                  |        | Х                |           |          |          | X        |                   | X       |  |
| High field NC Structures                 | ?              | CTF3, SLAC, KE  | (        |       |       |       |         |      |                  |       |      |                    |        |                  | Х         |          |          |          | X                 |         |  |
| Low emittance generation                 | CLIC/ILC WG?   | ATF1            |          |       |       |       |         |      |                  |       |      | Х                  | X      | Х                | Х         | Х        | Х        |          |                   |         |  |
| Nanometer beam focusing                  | ATF coll       | ATF2            | Х        |       |       |       |         |      |                  |       |      | Х                  | Х      | Х                | Х         | Х        | Х        |          |                   |         |  |
| Alignment and stabilisation              | ?              | AlignTF, StabTF |          |       |       |       | Х       |      | Х                | Х     | Х    | Х                  | Х      |                  | Х         | Х        | Х        |          |                   |         |  |
| RF power source high efficiency          | ?              |                 | X        | X     | Х     |       |         |      |                  |       |      |                    |        | Х                | Х         |          |          | X        |                   | X       |  |
| High beam power generation&handling      | ?              | SNS, PSI        | Х        | X     |       |       |         |      |                  |       |      | Х                  | Х      | Х                | Х         | Х        | Х        | Х        | X                 | X       |  |
| Collimation & targets high power beams   | ?              | HRad,HARP,MERI  | Х        | X     | Х     |       |         |      |                  |       |      | Х                  | X      | Х                | Х         |          |          | X        | X                 | X       |  |
| Cooling (Electron, Coherent, Stochastic) | ?              | RHIC            |          |       |       | S,E   | S       |      | C                | C     | Ε    |                    |        |                  |           |          |          |          |                   |         |  |
| Ionisation cooling                       | ?              | MICE,MTA, Mu    | Cool     |       |       |       |         |      |                  |       |      |                    |        |                  |           |          |          | Х        | X                 |         |  |
| crab cavities                            | ?              | KEKB            | Х        |       |       |       |         |      | X                | X     | Х    |                    |        | Х                | Х         |          |          |          |                   |         |  |
| Plasmas                                  | LBL, SLAC      | BELLA, FACET    |          |       |       |       |         |      |                  |       |      |                    |        |                  |           | Х        |          |          |                   |         |  |
| Lasers                                   | LBL, Ec. Polyt | BELLA, LULI     |          |       |       |       |         |      |                  |       |      |                    |        | Х                | Х         | Х        | Х        |          |                   |         |  |
| Drive beam generation                    | CTF3 collab    | CTF3, FACET     |          |       |       |       |         |      |                  |       |      |                    |        |                  | Х         | Х        | Х        |          |                   |         |  |
| Beam dynamics simuations                 | ?              | Test benches    | Х        | Х     | Х     | Х     | Х       | Х    | Х                | Х     | Х    | Х                  | Х      | Х                | Х         | Х        | Х        | Х        | X                 | X       |  |
| Beam Instrumentation                     | ?              |                 | Х        | X     | Х     | Х     | X       | Х    | X                | X     | Х    | Х                  | X      | Х                | Х         | X        | Х        | X        | X                 | X       |  |
| Beam based feedbacks                     | ?              |                 |          |       |       | Х     | X       |      |                  | X     | Х    | X                  | X      | Х                | Х         |          |          |          |                   |         |  |
| Energy recovery linacs                   | CEBAF?         | CEBAF, BNL R&   | D ERL    |       |       |       |         |      | X                | X     | Х    |                    |        |                  |           |          |          |          |                   |         |  |
| Nanobeam scheme (LPA & Crab waist)       | B Fact collab? | DAFNE           | Х        |       |       |       |         |      |                  |       |      | Х                  | X      |                  |           |          |          |          |                   |         |  |
| Positron generation                      | ?              |                 |          |       |       |       |         |      |                  | X     | Х    | Х                  | X      | Х                | Х         |          |          |          |                   |         |  |
| Polarisation                             | ?              |                 |          |       |       | X     | X       |      | X                | X     | Х    |                    | X      | Х                | Х         |          |          |          |                   |         |  |
| Dynamic vacuum                           | ?              |                 |          | Х     | X     | Х     | Х       |      |                  | Х     | Х    | Х                  | X      |                  | Х         |          |          |          |                   |         |  |
| J.P.Delahaye                             |                |                 |          |       |       | Ī     | CHE     | P 2  | 010              | (28/  | 07/1 | 10)                |        |                  |           |          |          |          |                   | 3       |  |

### Global Collaborations (Examples of)



• ATF, to establish the technologies associated with producing the electron beams with the quality

required for ILC and provide such beams to ATF2 in a stable and reliable manner. • ATF2, to use the beams extracted from ATF at a test final focus beamline which is similar to what is envisaged at ILC. The goal is to demonstrate the beam focusing technologies that are consistent with ILC requirements. For this purpose, ATF2 aims to facus the beam down to a few tens of nm (rms) with a beam centroid stability within a few mm for a prolonged period of time. Both the ATF and ATF2, to serve the mission of providing the young scientitis and engineers with

training opportunities of participating in R&D programs for advanced accelerator technologies.

CERN, RAL, CEA, LBNL on Short Model Coil development
KEK, NIMS, FNAL on Nb<sub>3</sub>Al model coils

- LBNL, KEK on Nb3Sn coil, structure and assembly methods
- KEK & CERN on Nb3Al technology for the LHC upgrades
- CERN & CEA, UT, LBNL/LARP on magnet testing
- LBNL & FNAL, BNL, CERN, UT, TAMU on cable development

European Commission supported Coordination of Accelerator R&D



coordination & support of European distributed R&D Infrastructure and joint R&D programme Starting end 2010: <u>http://www.eu-tiara.eu</u>

TDR (2010-2011)

als (CNRS, France)

ce. O. Napoly (CEA Saclay, France

Integrated Activity: EUCARD <u>http://eucard.web.cern.ch/EuCARD/</u>



**Towards Energy frontier** 

#### **Towards Luminosity frontier**

#### Complementary facilities of various particle species

| Ha      | adrons/Hac | Irons                   |              | Lep              | tons/Le                | ptons                            |
|---------|------------|-------------------------|--------------|------------------|------------------------|----------------------------------|
| Species | Present    | Future                  |              | Frontier         | Present                | Future                           |
| Protons | TEVATRON   | LHC<br>HL-LHC<br>VL-LHC |              | Energy           | Хер                    | ILC<br>CLIC<br>Muon Collider     |
| Ions    | RHIC       | RHIC II<br>LHiC         |              | Lumin            | КЕКВ<br>Р <b>к</b> ріі | SuperKEK<br>SuperB               |
| Ha      | adrons/Lep | tons                    | New<br>hysic | s                | Neutrin                | os                               |
| Species | s Present  | Future                  |              | Presen           | it                     | Future                           |
| Energy  | y          | LHeC                    | K            | Super<br>Kamioka | - Li<br>nde Ne         | BNE/Project X<br>eutrino Factory |
| Lumin   | . HERA     | ELIC                    |              | MINO             | S                      |                                  |
|         |            | ERHIC                   |              | CNG              |                        |                                  |
|         |            |                         |              |                  |                        |                                  |

#### **Present HEP colliders at Energy/Luminosity frontiers**



#### **Proton Colliders @ High Energy Frontier**



#### LHC parameters evolution Nominal High-Lyminosity High-Energy

|                                                                              | LHC                                | HL-LHC                                   | HE-LHC                           |
|------------------------------------------------------------------------------|------------------------------------|------------------------------------------|----------------------------------|
| Collision energy [TeV]                                                       | 14                                 | 14                                       | 33                               |
| Peak/leveled luminosity [10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> ] | 1.0                                | 7.9/5.0                                  | 2.0/2.0                          |
| ntegrated luminosity per year (1900h) [fb <sup>-1</sup> ]                    | 57                                 | 250                                      | 100                              |
| events per crossing                                                          | 19                                 | 150                                      | 76                               |
| # bunches / beam                                                             | 2808                               | 2808                                     | 1404                             |
| ounch population [10 <sup>11</sup> ]                                         | 1.15                               | 1.7                                      | 1.29                             |
| Beam current [A]                                                             | 0.58                               | 0.86                                     | 0.32                             |
| _uminosity leveling                                                          | no                                 | $\theta_{c}$ , $V_{crab}$ or $\beta^{*}$ | ٤ <sub>x.y</sub>                 |
| nitial transverse normalized emittance [µm]                                  | 3.75                               | 3.75                                     | 3.75 (x),1.84 (y)                |
| number of IPs contributing to tune shift                                     | 3                                  | 3                                        | 2                                |
| naximum total beam-beam tune shift                                           | 0.01                               | 0.01                                     | 0.01                             |
| [P beta function [m]                                                         | 0.55                               | 0.14                                     | 1.0 (x), 0.43 (y)                |
| full crossing angle [µrad]                                                   | <b>285 (9.5</b> σ <sub>x.y</sub> ) | 0 (509)                                  | <b>175 (12</b> σ <sub>×0</sub> ) |
| dipole field [T]                                                             | 8.33                               | 8.33                                     | 20                               |
| dipole coil aperture [mm]                                                    | 56                                 | 56                                       | 40-45                            |
| stored beam energy [MJ]                                                      | 362                                | 504                                      | 479                              |
| SR power per ring [kW]                                                       | 3.6                                | 5                                        | 62.3                             |
| ongitudinal SR emittance damping time [h]                                    | 12.9                               | 12.9                                     | 0.98                             |
| uminosity lifetime [h]                                                       | 23                                 | 4                                        | 13                               |
|                                                                              |                                    |                                          |                                  |

# HL-LHC – LHC modifications



# HE-LHC – LHC modifications



# LHC upgrade issues and R&D

| Issues                                    | High Luminosity LHC                                               | High energy LHC                       |
|-------------------------------------------|-------------------------------------------------------------------|---------------------------------------|
| Super-Cond. quadrupoles                   | 15 T for low beta @IR                                             | for IR and Ring                       |
| Super-Conducting dipoles                  |                                                                   | 20 T (Nb3Sbn, HTS)                    |
| Fast cycling SC magnets                   |                                                                   | For 1.3 TeV injector                  |
| Mini beta operation                       | Chromatic correction<br>and large aperture of<br>matching section | Cryogenic handling of<br>SR heat load |
| Crab cavities                             | Novel compact design con<br>protection                            | npatible with machine                 |
| Machine protection<br>(500 MJ beam power) | Collimation with high<br>effic, & reliability, low<br>impedance   | Cryogenic handling of<br>SR heat load |
| Luminosity leveling                       | Control $q_c$ , $V_{crab}$ or b*                                  | Control emittances                    |
| Dynamic vacuum                            |                                                                   | Synchrotron<br>radiation              |



15 to 24 T Possible Super-conductors: Nb<sub>3</sub>Sn existing up to 17-18 T High Temperature SC : Bi-2212 (existing) or YBCO (small tapes only)

Promising but lots of R&D



#### **Ions Colliders Parameters**

|         | Parameters           | NICA    | RHIC II | LHiC   |
|---------|----------------------|---------|---------|--------|
|         | Energy (GeV/Nucleon) | 1-4.5   | 100     | 2760   |
|         | Luminosity (10^27)   | 1       | 4       | 1      |
|         | Ions                 | Au-Au   | Au-Au   | Pb-Pb  |
| Ions    | Number bunches       | 34      | 111     | 592    |
|         | Ions/bunch (10^7)    | 100     | 100     | 7      |
|         | Emittances H/V ([µm] | 30/0.03 | 2.5     | 1.5    |
|         | Stored energy (MJ)   |         | 0.4     | 3.8    |
|         |                      |         |         |        |
|         | Energy(Gev/Nucleon)  | 12-25   | 250     | Later? |
| Protons | Luminosity (10^30)   | 1.1     | 300     | ?      |
|         | Polarisation (%)     | 70      | 70      | 0      |
|         |                      |         |         |        |

# Major issues of Ions Colliders

| Issues                                     | NICA                           | <b>RHIC II</b> | LHiC                                |
|--------------------------------------------|--------------------------------|----------------|-------------------------------------|
| Peak Luminosity and<br>Luminosity lifetime | Intra-beam sco                 | attering       | Beam losses from<br>EM interactions |
| Intensity limits                           |                                |                | Nuclear reactions<br>in collimators |
| Domodios                                   | Stochastic cool<br>bunched be  | New "cryo-     |                                     |
| Kemeules                                   | High voltage<br>elect. cooling | collimators"   |                                     |
| Efficient and high quality magnets         | Super -ferric<br>SC magnets    |                |                                     |
| Effective energy scan                      | Flexible lattice               |                |                                     |



All rings (Booster, Nuclotron and Collider) are superconducting synchrotrons based on 2 Tesla super-ferric magnets (Nuclotron technology);

# Large Hadron Ion Collider (LHiC)







## ENC @ FAIR



#### idea emerged 08/2008

L>1032 cm-2s-1

s1/2 > 10GeV  $(3.3 \text{GeV/ce}^{-} \leftrightarrow 15 \text{GeV/cp})$ 

polarized  $e^-$  ( > 80%)  $\leftrightarrow$ polarized p / d (> 80%)(transversal + longitudinal)

using the PANDA detector as much as possible

double polarized **Flectron Nucleon Collider** Luminosity: 8 × HERA (unpol.)

#### Taking advantage of the "existing" FAIR / HESR **15 GeV proton ring**

Preliminary Scheme for ENC at FAIR



#### ELIC at JLAB



Taking advantage of the



# LHeC – Two options

Taking advantage of the existing LHC proton ring 7 TeV (to 16.5 TeV in HE)



#### Hadron-Lepton Collider Parameters

| Parameters                                                      | ENC           | ELIC     | eRHIC      | LHe          | eC                       |
|-----------------------------------------------------------------|---------------|----------|------------|--------------|--------------------------|
| option                                                          | RR            | RR       | LR         | RR           | LR                       |
| P-A/e- energy [GeV]                                             | 15/3.3        | 60/3     | 325/20     | 7000/60      | 7000/60                  |
| √(S) [GeV]                                                      | 14 27 160-102 |          | 1296       | 1296         |                          |
| luminosity [10 <sup>32</sup> cm <sup>-2</sup> s <sup>-1</sup> ] | 2             | 400      | 140        | 17           | 10                       |
| P/e- polarization [%]                                           | 80/80         |          | 70/80      | /40          | /90                      |
| P/e- bunch popul. [10 <sup>9</sup> ]                            | 5.4/23        | 11/60    | 200/24     | 170/26       | 170/2.0                  |
| P/e- bunch length [mm]                                          | 0.3/0.1       | 5        | 49/20      | /10          | /0.3                     |
| P/e- bunch interval [ns]                                        | 19            |          | 74         | 25-50        | 25-50                    |
| P/e- tr. emit. ge <sub>x,y</sub> [µm]                           |               | 0.8/75   | 1200/25000 | 3.75/580,290 | 3.75/50                  |
| IP beam size s <sub>x,y</sub> [µm]                              |               |          |            | 30, 16       | 7                        |
| full crossing angle [mrad]                                      |               |          |            | 0.93         | 0                        |
| geometric reduction $H_{\rm hg}$                                |               |          |            | 0.77         | 0.91                     |
| Energy Recovery efficien.                                       | -             | -        | 94?        | -            | 94%                      |
| average current [mA]                                            |               | 860/4800 | 420/50     | 131          | 6.6                      |
| tot. wall plug power[MW]                                        |               |          |            | 100          | <b>100</b> <sup>30</sup> |

#### Review @IPAC10 V.Litvinenko/BNL

#### Main Accelerator Challenges

In red -increase/reduction beyond the state of the art

| ENC at FAIR                                                                            | ELIC at JLaB                                                           | eRHIC at BNL                                                           | LHeC at CERN                                |                                                                                               |  |  |  |  |  |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                                                        |                                                                        |                                                                        | Ring-Ring                                   | Linac-Ring                                                                                    |  |  |  |  |  |
|                                                                                        | β*=0.5 cm<br>50x reduction                                             | Polarized electron gun -<br>50x increase                               | Depolarization at the top energy            | Polarized e <sup>_</sup> source                                                               |  |  |  |  |  |
| 8 MV, 3 A magnetized<br>electrostatic<br>(Voltage*2, Current*6)                        | HE Electron Cooling -                                                  | Coherent Electron<br>Cooling - New concept                             | Energy reach beyond 70<br>GeV for leptons   | Potential 10x gains from<br>cooling, but need special<br>CeC                                  |  |  |  |  |  |
| Investigation of large<br>beam-beam tune shift in<br>space charge dominated<br>regimes | High current<br>recirculating ring with<br>ERL-injector<br>New concept | Multi-pass SRF ERL<br>5x increase in current<br>30x increase in energy | Synchrotron radiation<br>losses in the arcs | Multi-pass SRF ERL<br>5x increase in current<br>30x increase in energy<br>3-4x in # of passes |  |  |  |  |  |
| Crab crossing<br>(compliance with<br>acceptance of PANDA)                              | Crab crossing<br>5x the angle<br>New for hadrons                       | Crab crossing<br>New for hadrons                                       | Crab crossing<br>New for hadrons            | Crab crossing<br>New for hadrons                                                              |  |  |  |  |  |
|                                                                                        | Polarized <sup>3</sup> H                                               | le production                                                          | By-passes                                   | Totally new tunnel                                                                            |  |  |  |  |  |
| Limited space for<br>electron ring                                                     | Never explored beam-<br>beam parameter range<br>3-4x in ξ              | Understanding of beam-<br>beam affects<br>New type of collider         | Complexity of the sharing tunnel with LHC   | Very challenging to have<br>et source                                                         |  |  |  |  |  |
| Polarization life time in<br>electron ring<br>(lattice considerations)                 |                                                                        | β*=5 cm<br>5x reduction                                                |                                             | Using crossing angle to<br>avoid SR in IR                                                     |  |  |  |  |  |
| Space charge limits<br>beam dynamics,<br>Bunching (1→200)                              | Sub-nsec kicker with<br>MHz rep-rate<br>50x shorter pulses             | Multi-pass SRF ERL<br>3-4x in # of passes                              | Need new injector                           |                                                                                               |  |  |  |  |  |
|                                                                                        | Figure-8 ring spin<br>dynamics<br>New concept                          | Feedback for kink<br>instability suppression<br>Novel concept          | Synchrotron radiation in the IR             | 31                                                                                            |  |  |  |  |  |





# Major parameters B Factories





|                                         |                                  | SuperB (B         | aseline)           | SuperKEKB            |          |  |  |  |  |
|-----------------------------------------|----------------------------------|-------------------|--------------------|----------------------|----------|--|--|--|--|
| Parameter                               | units                            | HER (e+)          | LER (e-)           | HER (e-)             | LER (e+) |  |  |  |  |
| Circumference                           | m                                | 1258              | 3.4                | 3016.3               |          |  |  |  |  |
| Energy                                  | GeV                              | 6.7               | 4.18               | 7                    | 4        |  |  |  |  |
| X angle (full)                          | mrad                             | 66                |                    | 83                   |          |  |  |  |  |
| $\beta_x$ at IP                         | cm                               | 2.6               | 3.2                | 2.4                  | 3.2      |  |  |  |  |
| β <sub>y</sub> at IP                    | cm                               | 0.0252            | 0.0206             | 0.041                | 0.027    |  |  |  |  |
| ε <sub>x</sub>                          | nm                               | 2.0               | 2.41               | 2.4                  | 3.1      |  |  |  |  |
| Emittance ratio                         | %                                | 0.25              | 0.25               | 0.35                 | 0.40     |  |  |  |  |
| $\sigma_{z}$ (full)                     | mm                               | 5                 | 5                  | 5                    | 6        |  |  |  |  |
| 1                                       | mA                               | 1892              | 2410               | 2620                 | 3600     |  |  |  |  |
| $\sigma_{\!x}$ at IP                    | μm                               | 7.211             | 8.782              | 7.75                 | 10.2     |  |  |  |  |
| $\sigma_{\!\scriptscriptstyle y}$ at IP | μm                               | 0.035             | 0.035              | 0.059                | 0.059    |  |  |  |  |
| ξ <sub>x</sub>                          |                                  | 0.0021            | 0.0033             | 0.0028               | 0.0028   |  |  |  |  |
| ξ <sub>y</sub>                          |                                  | 0.0978            | 0.0978             | 0.0875               | 0.09     |  |  |  |  |
| Luminosity                              | cm <sup>.2</sup> s <sup>.1</sup> | 1×10              | )36                | 0.8x10 <sup>36</sup> |          |  |  |  |  |
|                                         |                                  | Next Generation E | 3-factories IPAC10 |                      |          |  |  |  |  |

# **KEKB to SuperKEKB** : current status KEKB operation finished at 9:00 am June 30, 2010 6 dt = 1040 Partially funded (100 M\$)

 SuperKEKB budget is partially approved
Damping ring : 580M yen (~5.8M\$) (FY2010)
Special budget "Very Advanced Research Support Program" 1B yen (~100M\$) (FY2010-2012)

->Start construction (FY2010-2013)



#### Lepton Colliders at the Energy Frontier



### Linear Collider layouts

http://www.linearcollider.org/cms http://clic-study.web.cern.ch/CLIC-Study/



## Linear Collider main parameters

| Technology                                                   | ILC               | CLIC                   |                            |  |  |  |  |
|--------------------------------------------------------------|-------------------|------------------------|----------------------------|--|--|--|--|
| Centre-of-mass energy (GeV)                                  | 500               | 500                    | 3000                       |  |  |  |  |
| Total (Peak 1%) luminosity (10 <sup>34)</sup>                | 2.0(1.5)          | <b>2.3(1.4)</b>        | 5.9(2.0)                   |  |  |  |  |
| Total site length (km)                                       | 31                | 13.0                   | 48.3                       |  |  |  |  |
| Loaded accel. gradient (MV/m)                                | 31.5              | 80                     | 100                        |  |  |  |  |
| Main linac RF frequency (GHz)                                | 1.3 (Super Cond.) | 12 (Normal Conducting) |                            |  |  |  |  |
| Beam power/beam (MW)                                         | 20                | 4.9                    | 14                         |  |  |  |  |
| Bunch charge (10 <sup>9</sup> e+/-)                          | 20                | 6.8                    | 3.72                       |  |  |  |  |
| Bunch separation (ns)                                        | 176               | 0.5                    |                            |  |  |  |  |
| Beam pulse duration (ns)                                     | 1000              | 177                    | 156                        |  |  |  |  |
| <b>Repetition rate (Hz)</b>                                  | 5                 |                        | 50                         |  |  |  |  |
| Hor./vert. norm. emitt (10 <sup>-6</sup> /10 <sup>-9</sup> ) | 10/40             | 4.8/25                 | 0.66/20                    |  |  |  |  |
| Hor./vert. IP beam size (nm)                                 | 640/5.7           | 202 / 2.3              | 40 / 1                     |  |  |  |  |
| Hadronic events/crossing at IP                               | 0.12              | 0.19                   | 2.7                        |  |  |  |  |
| Coherent pairs at IP                                         | 10                | 100                    | <b>3.8</b> 10 <sup>8</sup> |  |  |  |  |
| Wall plug to beam transfer eff                               | 9.4%              | 7.5%                   | 6.8%                       |  |  |  |  |
| Total power consumption (MW)                                 | 216               | 129.4                  | 415                        |  |  |  |  |

#### Status and major issues of Linear Colliders

#### ILC

- 0.5 TeV upgradable to 1 TeV
- Mature SC-RF technology (TESLA- Flash- XFEL)
- CDR in 2007, TDR in 2012
- Global Intern. collaboration & organisation (GDE)

#### CLIC

- extension in multi-TeV range
- Novel scheme of Two Beam Acceleration (TBA): CTF1,2,3
- CDR in 2011, TDR in 2016
- Multi-lateral Int. Collaboration of 38 volunteer Institutes

**Extremely fruitful collaboration between CLIC and ILC Taking advantage of common issues and great synergies** 

Common IWLC Workhop (18-22/10/2010 @ CERN)

Towards single Linear Collider community and....

Possibly future joined project based on Physics requests (LHC results) and technology choice as best trade off between performance, maturity, risk, cost, etc....

## Successful ILC Super Conducting RF developments in global collaboration





#### **Test Facilities on Linear Colliders Common Issues**

#### ATF/KEK: ultra low emittance and nanometer beam sizes



#### CESR-TA/Cornell:Electron cloud



# Muon Collider possible alternative for Multi-TeV Lepton Collider ?

Limited synchroton radiation and beamstrahlung due to high mass:( $m_{\mu}$  /  $m_{e}$  ~ 207)







#### **Muon Collider Schematic**



Neutrino Factory as first possible step towards Muon Collider Large number of synergies, identical Front End

#### Muon Collider Issues&Challenges, R&D



#### **Project X at FNAL: 3 MW proton source**



#### Possible future HEP facilities at Energy/Luminosity frontier



| Te                         | ntative        | 2        | SC       | h                    | dul              | P     | ne                         | W      | nr       | ni                      | 01                            | ts        | -    | Color c<br>R&D          | ode   |       |       |               | appr         | oved  | envisa | ged/p       | roposed |
|----------------------------|----------------|----------|----------|----------------------|------------------|-------|----------------------------|--------|----------|-------------------------|-------------------------------|-----------|------|-------------------------|-------|-------|-------|---------------|--------------|-------|--------|-------------|---------|
|                            |                | <u> </u> |          |                      |                  |       |                            |        |          |                         |                               |           | ור   | R&D to                  | CDR   |       |       |               |              |       |        |             |         |
|                            | European       | 3        | orat     | eg                   | у                |       | utur                       | ет     | aciii    | ty specif.              |                               |           |      | Technical design to TDR |       |       |       |               |              |       |        |             |         |
|                            | For Particle   | e        | Phy      | Ş                    | S                | -1    | fr <mark>om LHC P ا</mark> |        |          |                         | sic                           | :s?       |      | Construction            |       |       |       |               |              |       |        |             |         |
|                            | Droiget        |          | 40 0044  |                      |                  |       |                            | 47 04  | 40 0040  |                         | 2024                          | 2022      |      |                         |       | 2026  | 2027  | 2020          | 2020         | 2020  | 0004   |             |         |
| Last update:<br>28/07/2010 | Project        | 2        | 010 2011 | 2012                 | 2013 2014        | 201   | 2016 20                    | )172(  | 018 2019 | 2020                    | 2021                          | 2022 2    | 2023 | 2024                    | 2025  | 2026  | 2027  | 2028          | 2029         | 203   | 2031   | 2032        | 2033    |
|                            | LHC to nominal | 7        | TeV      | Interc<br><u>onn</u> | 14 TeV           |       | linac4P<br>SB              |        | 10^3     | 4                       |                               |           |      |                         |       |       |       |               |              |       |        |             |         |
| Protons                    | LHC-HL         |          |          |                      |                  |       |                            |        |          |                         | 5.10                          | 0^34 v    | vith | lumi                    | inosi | ty le | velin | g             |              |       |        |             |         |
|                            | LHC-HE         |          |          |                      |                  |       |                            | New    |          |                         |                               | w magnets |      |                         |       |       |       |               | 33 TeV       |       |        |             |         |
|                            | ILC            |          |          |                      |                  |       |                            |        |          |                         | 500                           | GeV       |      |                         |       |       |       |               |              |       |        |             |         |
| Linear                     | CLIC           |          |          |                      |                  |       |                            |        |          |                         |                               |           |      |                         |       | 500   | GeV   | 1             | 3 Te         | V     |        |             |         |
| Colliders                  | PWFA           |          |          | FAC                  | ET               |       |                            |        |          | FAC                     | ET-II                         |           |      |                         |       |       |       |               |              |       |        |             |         |
|                            | LWFA           |          |          | BEL                  | LA               |       |                            |        |          |                         |                               |           |      |                         |       |       |       |               |              |       |        |             |         |
| Muons &                    | Muon Collider  |          |          |                      |                  |       |                            |        |          |                         |                               |           |      |                         |       |       |       |               |              |       |        |             |         |
|                            | Neutrino Fact  | Π        |          |                      |                  |       |                            |        |          |                         |                               |           |      |                         |       |       |       |               |              |       |        |             |         |
| Neutrinos                  | Project X/FNAL |          |          |                      |                  |       |                            |        |          |                         |                               |           |      |                         |       |       |       |               |              |       |        |             |         |
|                            | LHeC           | Π        |          |                      |                  |       |                            |        |          | RR or LR instalation To |                               |           |      |                         |       |       | Τον   | wards HE-LHeC |              |       |        |             |         |
|                            | eRHIC/BNL      | Π        |          |                      | CD0              |       |                            |        |          |                         | upgrade from 5 x 325 GeV to 3 |           |      |                         |       |       |       | :0 3          | 30 x 325 GeV |       |        |             |         |
| e-nadrons                  | ELIC/JLAB      |          |          |                      |                  |       |                            |        |          |                         | MELIC                         |           |      |                         |       |       |       |               | ELIC         |       |        |             |         |
|                            | ENC/GSI        | Π        |          |                      |                  |       |                            |        |          |                         |                               |           |      |                         | shar  | ed o  | pera  | tion          | HESF         | R/EN  | :      |             |         |
|                            | LHiC/CERN      | 2        | .8TeV/   | า                    | 5.5 TeV/         | 'n: P | )-Pb, <mark>p-</mark>      | ·Pb, / | Ar-Ar,   |                         |                               |           |      |                         |       |       |       |               |              | Τον   | ards   | HE-         | LHeC    |
| lana                       | RHIC II/BNL    |          |          |                      |                  |       |                            |        |          |                         |                               |           |      |                         |       |       |       |               |              |       |        |             |         |
| Ions                       | NICA/DUBNA     |          |          |                      |                  |       |                            |        |          |                         |                               |           |      |                         |       |       |       |               |              | ,<br> |        |             |         |
|                            | FAIR/GSI       | Γ        |          |                      |                  |       |                            |        |          |                         |                               |           |      |                         |       |       |       |               |              |       |        |             |         |
| Beauty                     | SuperKEKB/KEK  |          |          |                      |                  |       |                            |        |          | 50/                     | ab                            |           |      |                         |       |       |       |               |              |       |        |             |         |
| Factories                  | SuperB/LNF     | Π        |          |                      |                  |       |                            |        |          |                         |                               | 75/al     | b    |                         |       |       |       |               |              |       |        |             |         |
| J.P.Del                    | ahaye          | LI       | HC =     | - 1                  | fb <sup>-1</sup> | 66    | fb <sup>-1</sup>           |        | 336      | fb                      | -1                            | ICH       | IEF  | <b>20</b>               | 10 (  | 28/0  | )7/1  | 0)            | 30           | 70    | fb     | <b>1</b> 49 |         |