CLEO Challenges LQCD David G. Cassel *Cornell University* CLEO Collaboration

Outline

- Motivation
- Leptonic Charm Decays
- Semileptonic Charm Decays
- Conclusions

35th International Conference on High Energy Physics Paris, July 22 – 28, 2010

Motivation

Overconstraining the CKM matrix is the principal goal of Heavy Flavor Physics.

- Inconsistencies would suggest New Physics in *CP* violation.
- Nonperturbative QCD parameters are required to extract $|V_{ub}|$, $|V_{td}|$, and $|V_{ts}|$ from measurements in the beauty sector.
 - Lattice QCD (LQCD) can provide these parameters.
 - Experimental validation of LQCD is essential to ensure reliability.
 - Precision charm sector measurements can challenge LQCD calculations.

Providing precise charm data to motivate and validate theoretical progress in nonperturbative heavy quark physics is a major focus of the CLEO-c program.

David G. Cassel

Example: Determining V_{td} from $B^0 \overline{B}^0$ Mixing

The measured mass difference due to $B^0 \overline{B}{}^0$ mixing is related to V_{td} by:

$$\Delta m_d = rac{G_F^2}{6\pi^2} \; \eta_{QCD} \; M_B \; f_B^2 B_B \; m_t^2 \; F(rac{m_t^2}{m_W^2}) \; rac{V_{td}^2}{V_{tb}^2} \; V_{tb}^2$$

- Everything in this expression is quite well known, except the decay constant f_B and the bag constant B_B .
- Theoretical uncertainties in $f_B^2 B_B$ determine the width of the region in the ρ - η plane allowed by measurements of Δm_d .
- f_B could be measured in $B^- \to \ell^- \bar{\nu}$ decay, but due to Cabibbo suppression the branching fraction is very small for μ or τ and reconstructing $B^- \to \tau^- \bar{\nu}$ is very difficult.
- Analogous parameters f_D (f_{D_s}) can be measured much more easily in $D^+ \to \ell^+ \nu \ (D_s \to \ell^+ \nu)$ decay, which are less seriously (not) Cabibbo suppressed
 - Measurements of f_D (f_{D_s}) constrain or validate LQCD calculations of f_B .

Furthermore, measurements of form factors $f_{+}(0)$ for semileptonic D and D_s decay check or validate theoretical calculations of the form factor $f_{+}(0)$ required to determine V_{ub} from measurements of semileptonic B decay.

The CLEO-c Detector

- Excellent Particle Identification (dE/dx and RICH): 0
- Tracking Resolution: $\sigma_p/p = 0.6\%$ at $p = 1~{
 m GeV}/c$
- CsI Calorimeter Resolution: $\sigma_E/E = 5\%$ at $E_{\gamma} = 100$ MeV and 2.2% at 1 GeV
- Hermetic Tracking and Calorimetry: 93% of 4π
- Acceptance, Resolution, and Particle Identification: Well-Understood

These qualities enable accurate reconstruction of missing ν s in semileptonic decays!

Double Tag Technique

Many CLEO-c $D \& D_s$ measurements use Double Tags

- Simple $D\bar{D}$ states
 - $e^+e^-
 ightarrow \psi(3770)
 ightarrow D^0 ar{D}^0 ext{ or } D^+D^-$
 - $e^+e^-
 ightarrow \psi(4170)
 ightarrow D_s \bar{D}_s^*
 ightarrow D_s^+ D_s^- \gamma$
- Reconstruct one $\bar{D}_{(s)}$ to get a clean tagged sample of $D_{(s)}$ signal decays
- Reconstruct the $D_{(s)}$ in a signal mode *e.g.*, leptonic or semileptonic
- Enables accurate measurements of absolute branching fractions (pioneered by MARK III)
- Very clean events and tags

(Square root plots make backgrounds visible)

The factor $f_{D_q}V_{cq}$ occurs in the decay amplitude for the $c\bar{q}W$ vertex

• The decay widths for leptonic D^+ and D_s^+ decays are:

$$\Gamma(D_q^+ o \ell^+
u_\ell) = rac{1}{8\pi} G_F^2 M_{D_q} \; m_\ell^2 \left(1 - rac{m_\ell^2}{M_{D_q}^2}
ight) rac{|f_{D_q} V_{cq}|^2}{|f_{D_q} V_{cq}|^2}$$

- Measurements of $\mathcal{B}(D^+ \to \ell^+ \nu_\ell)$ and $\mathcal{B}(D_s^+ \to \ell^+ \nu_\ell)$ Determine $f_{D^+}V_{cd}$ and $f_{D_s}V_{cs}$
- We measure $f_{D_q}V_{cq}$ and use PDG values of V_{cq} to get f_{D_q}
 - Eventually get V_{cd} and V_{cs} from semileptonic D decays and QCD form factors
- f_{D^+} and f_{D_s} measurements constrain or validate LQCD calculations of f_B and f_{B_s}

Start with a hadronic D^+ or D_s^+ tag

- The γ from $D_s \bar{D}_s^* \to D_s^+ D_s^- \gamma$ is a nuisance
 - Find the γ and include it in reconstruction or
 - ignore it and include it in the extra calorimetry energy

D^+ and D_s Leptonic Decay Signals

7

$f_{D^+} \& f_{D_s}$ Results and LQCD

- Agreement of the f_{D^+} result with LQCD is excellent
- Agreement of f_{D_s} results with LQCD is less certain
- CLEO-c results dominated by statistical errors
 - Excellent opportunity for BESIII to contribute with larger data samples
 - Would challenge LQCD at a new level of precision

Exclusive Semileptonic D Decays

- Exclusive semileptonic decays depend on the mass-squared (q^2) of the virtual W through form factors $f(q^2)$
- Decay to a pseudoscalar meson P_{qs} involves only one form factor

$$rac{\Gamma(D_q o P_{qs}\,\ell^+
u_\ell)}{dq^2} = rac{G_F^2 p^3}{24\pi^3} \; rac{|V_{cs}\;f^{qs}_+(q^2)|^2}{|V_{cs}\;f^{qs}_+(q^2)|^2} \quad (ext{also}\;s o d)$$

- CLEO-c measures $|V_{cs}f^{qs}_+(q^2)|$ and $|V_{cd}f^{qd}_+(q^2)|$ to test QCD theories of $f(q^2)$
 - Goal is to validate theories of $f_+(q^2)$ for application in the *B* meson sector
 - Most important for V_{ub} from $b \rightarrow u$ transitions where HQET does not apply
- Decay to a vector meson (V) involves 3 form factors and a more complicated expression involving 3 decay angles (or 3 other variables) in addition to q^2

D^0 and D^+ Semileptonic Decays

David G. Cassel

 $D^0 o K^- e^+
u$

ICHEP 2010

Technique

- Find a fully reconstructed hadronic decay tag
- Find a semileptonic candidate in the event
- Determine $E_{\text{miss}} \& P_{\text{miss}}$ from detector hermiticity
- Fit the $U \equiv E_{\text{miss}} cP_{\text{miss}}$ distribution for the signal
- Extremely clean signals in Cabibbo-favored $D \rightarrow Ke\nu$ modes

10

D^0 and D^+ Semileptonic Decays

- Clean and robust signals in Cabibbo-suppressed $D \rightarrow \pi e \nu$ modes
- Excellent isospin agreement for branching fractions and form factors

- Determine $f_+(0)$ from fits of $d\Gamma/dq^2$ distributions to the parametrization of T. Becher and R. J. Hill
- Determine branching fractions from integration of the fits over q^2

 D^0 and D^+ Semileptonic Form Factors

$f_+(0)$ for D^0 and D^+ Semileptonic Decays

Results averaged over isospins

13

D^0 and D^+ Semileptonic Branching Fractions

Results averaged over isospins

Measurements of $|V_{cd}|$ and $|V_{cs}|$

- Require values of $f_+(0)$ from LQCD
- Inner error bars are combined experimental statistical and systematic uncertainties
- Outer error bars include $f_+(0)$ uncertainties from LQCD
- LQCD uncertainties dominate
 - Serious challenge for LQCD

Conclusions

Reported leptonic and semileptonic results from the the full $\psi(3770)$ and $\psi(4170)$ data samples

- f_{D^+} and f_{D_s} results are statistics limited
 - Agreement of the f_{D^+} result with LQCD is excellent
 - Agreement of f_{D_s} results with LQCD is less certain
 - CLEO-c results dominated by statistical errors
 - Excellent opportunity for BESIII to contribute with larger data samples
 - Would challenge LQCD at a new level of precision
- Precision measurements of $D \to Ke\nu$ and $D \to \pi e\nu$ branching fractions and form factors
 - Branching fraction results agree with earlier measurements
 - Form factor agreement with LQCD good at low q^2
 - Form factor agreement with LQCD less good at high q^2
 - LQCD uncertainties dominate measurements of $|V_{cd}|$ and $|V_{cs}|$
 - Significant challenge for LQCD