

Improved Measurement of the Electroweak Penguin Process $B \rightarrow X_s \ l^+l^-$ at Belle

Cheng-Chin Chiang National Taiwan University, Taiwan

24 July 2010, Paris, France 35th International Conference on High Energy Physics

Theoretical Motivation

 The FCNC (Flavor Changing Neutral Current) process is forbidden at tree level, and can only occur at high order via electroweak penguin and W⁺W⁻ box diagrams:

 This decay mode is sensitive to the new physics that may contribute in the loops [A. Ali *et al.*, PRD 66, 034002 (2002); T. Hurth, hep-ph/0212304, SLAC-PUB-9604 (2003); U. Egede *et al*, arXiv: 0807.2589; J. Matias, arXiv: 0807.2579].

Wilson Coefficient

• In the effective Hamiltonian, Wilson coefficient is the strength of corresponding short distance operator:

$$H_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i=1}^{10} C_i(\mu) O_i(\mu)$$

where

$$\begin{pmatrix}
O_7 = \frac{e}{16\pi^2} \bar{s}_{\alpha} \sigma_{\mu\nu} (m_s L + m_b R) b_{\alpha} F^{\mu\nu}, \\
O_9 = \frac{e^2}{16\pi} \bar{s}_{\alpha} \gamma^{\mu} L b_{\alpha} \bar{l} \gamma_{\mu} l, \\
O_{10} = \frac{e^2}{16\pi} \bar{s}_{\alpha} \gamma^{\mu} L b_{\alpha} \bar{l} \gamma_{\mu} \gamma_5 l,
\end{cases}$$

- For $b \rightarrow s l^+l^-$ case, only O_7 , O_9 and O_{10} appear in effective Hamiltonian
- Constraining the Wilson coefficient by b → s l⁺l⁻ decay can probe New Physics

Observables

- The Wilson coefficients, C_9 , C_{10} and sign C_7 , can be constrained by measuring the branching fraction (BF) of $B \rightarrow X_s l^+ l^-$
- The M_{χ_s} and $M_{I+I_2}^2$ distributions can also test the fragmentation model and non-SM effect ($\hat{s} = M_{I+I_2}^2 / m_b^2$)

$B \rightarrow X_s l^+l^-$ Analysis

- For $B \rightarrow X_s I^+I^-$ analysis, we sum up 36 exclusive modes:
- $Xs: K^{\pm}/K_{S}^{0} + n\pi^{\pm}/m\pi^{0} (n \le 4, m \le 1); I^{+}I^{-}: e^{+}e^{-}/\mu^{+}\mu^{-}$

Event Reconstruction and Background Suppression

- Particle selection: K^{\pm} , K_s^0 , π^{\pm} , π^0 , e^{\pm} , μ^{\pm}
- Event reconstruction variables:

- Beam constrain mass:
$$M_{bc} = \sqrt{E_{beam}^2 - \left|\sum \vec{P}_{X_s l^+ l^-}\right|^2} \qquad \left(E_{beam} = \frac{\sqrt{s}}{2} \approx 5.29 GeV\right)$$

- Energy difference:
$$\Delta E = E_B - E_{beam}$$

- M(X_s, I⁺I⁻):
$$M(X_s, l^+l^-) = \sqrt{E_{Xs,l^+l^-}^2 - \left|\sum \vec{P}_{Xs,l^+l^-}\right|^2}$$
 [Also apply J/ψ and $\psi(2S)$ veto]

- Background suppression:
 - For $\underline{b \rightarrow c \rightarrow s, d}$ background: using missing mass and missing energy information (since v is produced from these decays)
 - For $\underline{e}^+\underline{e}^- \rightarrow q\overline{q} \ (q=u,d,s,c)$ background: using Fox-Wolfram momentum information (since this decay shape is jet-like)
- Multiple candidates: we select best candidate using ΔE , vertex χ^2 , etc.
- We extract signals fit to M_{bc}

M_{bc} Fit Results

(For $M_{\chi_s} < 2.0 \text{ GeV}/c^2$ and $M_{/+/-} > 0.2 \text{ GeV}/c^2$)

Mode	Yield	BF (x 10 ⁻⁶)	Σ
$B \rightarrow X_{s}e^{+}e^{-}$	121.6 ± 19.3(stat.) ± 2.0(syst.)	$4.56 \pm 1.15(\text{stat.}) \stackrel{+0.33}{_{-0.40}}(\text{syst.})$	7.0
$B \rightarrow X_{s} \mu^{+} \mu^{-}$	118.5 ± 17.3(stat.) ± 1.5(syst.)	1.91 ± 1.02(stat.) ^{+0.16} _{-0.18} (syst.)	7.9
$B \to X_s l^+ l^-$	238.3 ± 26.4(stat.) ± 2.3(syst.)	3.33 ± 0.80 (stat.) $^{+0.19}_{-0.24}$ (syst.)	10.1

ps: BF($X_s e^+ e^-$) / BF($X_s \mu^+ \mu^-$) = 2.39 ± 1.41

$dBF(X_s/^+/^-) / dM_{Xs}$

$dBF(X_s/^+/^-) / dM_{/+/^-}^2$

Systematic Errors

- Peaking backgrounds (fit PDF systematics):
 - $-B \rightarrow J/\psi X_{s}, \ \psi(2S)X_{s}$
 - $-B \rightarrow \psi(3770) X_s, \ \psi(4040) X_s, \ \psi(4160) X_s$
 - $-B \to X_s \pi \pi, B \to X_s \pi l \nu$

• • •

- Detector systemaitcs:
 - Tracking efficiency
 - Lepton identification efficiency
 - Kaon/pion efficiency

•••

. . .

- MC modeling systematics:
 - BF($B \rightarrow K^*l^+l^-$) and BF($B \rightarrow Kl^+l^-$) assumptions
 - Transitions between $K^{*}l^{+}l^{-}$ and $X_{s}l^{+}l^{-}$
 - X_s decay fractions
 - X_s decay with two or more kaons

Summary

- We have measured the branching fraction of $B \rightarrow X_s l^+ l^-$ to be $(3.33 \pm 0.80 {}_{-0.24}^{+0.19})x \ 10^{-6}$ with 10.1σ significance, the $B\overline{B}$ data sample used is 657M.
- The distributions of $dBF(X_s l^+ l^-) / dM_{Xs}$ and $dBF(X_s l^+ l^-) / dM_{l^+ l^-}^2$ are consistent with SM prediction.
- The ratio $BF(X_se^+e^-) / BF(X_s\mu^+\mu^-) = 2.39 \pm 1.41$ is within our assumption $BF(X_se^+e^-) / BF(X_s\mu^+\mu^-) = 1.0$. The systematic uncertainty for $X_sl^+l^-$ efficiency with this assumed value is about 1.5%. This ratio can be checked in future with more BB data sample.

Backup

$e^+e^- \rightarrow q\overline{q} (q=u,d,s,c)$ Background Suppression

The dominant background in *B* analysis is e⁺e⁻ → qq (q=u,d,s,c), we called "continuum" (~ 3x BB).

• To suppress continuum background, we use <u>event shape variables</u> <u>(Fox-Wolfram momentum)</u> and <u>flavor tagging information</u>.

Systematic Errors

Source	$X_s e^+ e^-$	$X_s \mu^+ \mu^-$	
Signal Gaussian shape	± 0.3	± 0.1	
$J/\psi, \psi(2S)$ peaking background	± 1.2	± 0.9	
Higher ψ peaking background	± 0.9	± 0.9	
Hadronic peaking background	$^{+0.4}_{-0.5}$	+0.2 -0.3	
Self Cross-feed error	± 0.1	± 0.1	
Signal yield total	± 1.6	± 1.3	
Tracking efficiency	± 3.6	± 3.6	
Lepton identification efficiency	± 2.1	± 2.2	
Kaon identification efficiency	± 0.4	± 1.0	
π^{\pm} identification efficiency	± 3.4	± 3.0	
$K_{\rm S}^0$ efficiency	± 0.9	± 0.9	
π^0 efficiency	± 0.5	± 0.5	
\mathcal{R} cut efficiency	± 5.3	± 2.6	
Detector model subtotal	± 7.6	± 6.0	
Fermi motion model	$^{-4.9}_{+1.3}$	$^{-2.0}_{+0.6}$	
K^*-X_s transition	-6.8	-7.1 +2.7	
Hadronization	± 5.8	± 5.5	
Missing modes	± 1.7	± 1.7	
Signal model subtotal	+6.6 -10.3	$^{+6.4}_{-9.4}$	
Monte Carlo statistics	< 0.1	< 0.1	
$B\bar{B}$ counting	± 1.4	± 1.4	
Total	+10.2 -12.9	$^{+8.9}_{-11.2}$	
	(Ir	า %)	

Fit PDF systematics $\begin{array}{c}
B \rightarrow J/\psi X_{s}, \ \psi(2S)X_{s} \\
B \rightarrow \psi(3770)X_{s}, \ \psi(4040)X_{s}, \ \psi(4160)X_{s}
\end{array}$

$$\Rightarrow B \rightarrow X_{s}\pi\pi, B \rightarrow X_{s}\pi h$$

Detector systematics

MC modeling systemaics

- \rightarrow Transitions between $K^{*}I^{+}I^{-}$ and $X_{s}I^{+}I^{-}$
- $\rightarrow X_s$ decay fractions
- $\rightarrow X_{s}$ decay with two or more kaons