Search for D^0 leptonic decays at Belle

Marko Starič

Jožef Stefan Institute Ljubljana

ICHEP 2010

M. Starič (IJS)

Search for D^0 leptonic decays at Belle

Paris, 22-28 July, 2010

- ∢ ≣ →

< 🗇 🕨

э

1 / 11

Search for FCNC decays $D^0\to e^+e^-$ and $D^0\to \mu^+\mu^-$ and for LFV decays $D^0\to e^\pm\mu^\mp$

- Motivation
- Analysis steps
- Results
- Conclusions

Belle Collaboration, PRD 81 091102 (2010)

- 31

- 4 同 6 4 日 6 4 日 6

Standard Model (SM):

- FCNC decays are highly suppressed in SM
- \bullet With long distance contributions $\mathcal{B} \sim 10^{-13}$
- LFV decays are forbidden in SM

Some New Physics (NP) scenarios:

- FCNC branching fractions enhanced by many orders of magnitude
- R-parity violating SUSY: up to $10^{-8}~(\mu^+\mu^-)$
- Leptoquarks: ${\cal B}(D^0 o \mu^+ \mu^-) \sim 8 imes 10^{-7}$ (to explain f_{D_s} anomaly)

Charm FCNC and LFV decays probe couplings of up-quark sector in contrast to B and K.

 $D^0
ightarrow \mu^+ \mu^-$ SM short distance

- Our search based on 660 fb⁻¹ taken at $\Upsilon(4S)$ and 60 MeV below.
- To suppress background:
 - ${\scriptstyle \bullet}\,$ we use high momentum D^0 from $D^{*+} \rightarrow D^0 \pi^+$ decays
 - ullet and only D^{*+} coming from continuum process $e^+e^-\to c\bar{c}$
- Measurement relative to well measured $D^0
 ightarrow \pi^+\pi^-$

$$\mathcal{B}(D^0 o \ell^+ \ell^-) = rac{N_{\ell\ell}}{N_{\pi\pi}} rac{\epsilon_{\pi\pi}}{\epsilon_{\ell\ell}} \mathcal{B}(D^0 o \pi^+ \pi^-)$$

Normalization channel (data)

Fit of $m(\pi, \pi)$ distribution: Double Gaussian + FSR tail + linear $\sim 50 \times 10^3 D^0 \rightarrow \pi^+\pi^-$ decays

Event selection

- Standard charged track selection
- Standard particle identification criteria
 - μ , *e* efficiencies ~90%; pion mis-ID 1.5% (μ), 0.3% (*e*)
 - π efficiency ${\sim}83\%$
- D^0 daughters fitted to common vertex (decay vertex)
- IP constrained fit of D^0 and π_{slow} to find D^0 production vertex
- $p_{
 m cms}^{D^{*+}} > 2.5~{
 m GeV/c}$ to suppress bkg. (also rejects D^0 from B)
- Candidate D^0 mesons selected using two kinematic observables:
 - invariant mass of D^0 daughters: $1.81 < M < 1.91 \ {
 m GeV/c^2}$
 - energy released in D^{*+} decay: q < 20 MeV

- Background in $D^0
 ightarrow \ell^+ \ell^-$ according to generic MC simulation
 - 80% from semileptonic B decays
 - 10% from D⁰ decays
 - 10% other sources
- Can be grouped into:
 - smooth combinatorial background
 - 2 peaking background from mis-ID of $D^0 \to \pi^+\pi^-$

- To further suppress background:
 - requirements on signal region size in ${\cal M}$ and q
 - maximal allowed missing energy in the event E_{miss} to suppress bkg. from semileptonic B decays (undetected neutrinos!)

Optimization of selection criteria

- For optimization we select:
 - signal region size $(M_{
 m low},~M_{
 m up},~\Delta q)$
 - maximal allowed $E_{
 m miss}$
- Optimized to obtain the best upper limits
- Figure-of-merit: $\mathcal{F} = \epsilon_{\ell\ell}/N_{UL}$
 - $\epsilon_{\ell\ell}$... efficiency obtained from tuned signal MC
 - N_{UL} ... Poisson average of Feldman-Cousins 90% C.L. upper limits obtained with expected bkg. and no signal, using generic MC
- Each leptonic decay channel optimized separately

Background estimation

To estimate background inside the signal region we rely (almost) exclusively on experimental data

- Combinatorial background (smooth)
 - estimated from 2D sideband in q
 - shape: $f(M,q) \propto (1-aM)\sqrt{q}$
 - parameter a determined from fit to MC sample
- Peaking background (mis-ID of $D^0 \rightarrow \pi^+\pi^-$)
 - estimated from reconstructed $D^0 \rightarrow \pi^+\pi^-$ by replacing pion mass with lepton mass and by wighting each event with mis-ID probability
 - mis-ID probabilities measured using $D^{*+} \rightarrow D^0 \pi^+, D^0 \rightarrow K^- \pi^+$
 - resulting distribution normalized absolutely

dashed lines are borders of signal region

Channel	events	estim. bkg
$D^0 o \mu^+ \mu^-$	2	3.1±0.1
$D^0 ightarrow e^+ e^-$	0	$1.7{\pm}0.2$
$D^0 o e^\pm \mu^\mp$	3	2.6±0.2

Number of observed events consistent with estimated background

M. Starič (IJS)

Paris, 22-28 July, 2010

9 / 11

Upper limits on branching fractions

- Upper limits calculated using program pole.f
 - extension of Feldman-Cousins method by inclusion of systematic errors
- Found nearly the same results as with standard Feldman-Cousins

- We have searched for the FCNC decays $D^0 \rightarrow \mu^+ \mu^-$ and $D^0 \rightarrow e^+ e^-$, and the LFV decays $D^0 \rightarrow e^\pm \mu^\mp$.
- We found no evidence of these decays.
- We set new upper limits on branching fractions for these decays.
- Our results can further constrain the size of certain *R*-parity violating couplings.
- The upper limit for $D^0 \rightarrow \mu^+\mu^-$ (1.4 × 10⁻⁷) strongly disfavors a leptoquark contribution as the explanation for the f_{D_s} anomaly (prediction: $\mathcal{B} \sim 8 \times 10^{-7}$, I. Dorsner et al., PLB 682, 67 (2009)).