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Introduction
[

Introduction: phenomenology of exclusive processes within

@ Experimental tests are possible in fixed target experiments
o e*p, pFp: HERA (HERMES), JLab, COMPASS...
as well as in colliders, mainly for medium s

o eTp colliders: HERA (H1, ZEUS)

o ete colliders: LEP, Belle, BaBar, BEPC
@ Collinear factorization has been proven only for specific cases:
e.g.: pr production cannot directly be factorized (appearance of end point
singularities)
= improvement needed for a consistent approach of exclusive processes
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Introduction
L[]

QCD in the perturbative Regge limit with

9 At the same time, at large s, the interest for phenomenological tests of
hard Pomeron and related resummed approaches has become pretty wide:

9 inclusive tests (total cross-section) and semi-inclusive tests (diffraction,
forward jets, ...)

o exclusive tests (meson production)
@ These tests concern all type of collider experiments:
o e¥p: HERA: (H1, ZEUS)
e pp and pp: TEVATRON (CDF, D0); LHC (CMS, ATLAS, ALICE)
o ete™: (LEP, ILC)

@ These high energy exclusive processes in the perturbative Regge limit may
provide new ideas when dealing with collinear factorization
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Introduction
Exclusive p-production

Polarization effects in v* P — p P at HERA

@ one can experimentally measure all
spin density matrix elements

@ at t = tmin oOne can experimentally distinguish

7 — pr : dominates  (twist 2 dominance)
Ny — pr i sizable (twist 3)

9 S-channel helicity conservation:
{ Vi = pL (= Too)
YT = P,

Dominate with respect to all other transitions.
Experimentally, v7 — pr is dominated by v, — pr(-) and
Y14y — Pr+) (= T11)
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Introduction
Exclusive p-production

The processes with vector particle such as rho-meson probe deeper into the fine
features of QCD.
It deserves theoretical developpement to describe HERA data in its special
kinematical range:

@ large s+ p = small-x effects expected, within k;-factorization

@ large Q? = hard scale = perturbative approach and collinear factorization
= the p can be described through its chiral even Distribution Amplitudes

pL  twist 2
pT twist 3

The main ingredient is the v* — p impact factor
SIMPLEST OBJECT: ONLY 1 SOFT PART

o For pr, special care is needed: a pure 2-body description would violate
gauge invariance.
@ We show that:
@ Including in a consistent way all twist 3 contributions, i.e. 2-body and
3-body correlators, gives a gauge invariant impact factor
@ Our treatment is free of end-point singularities and does not violates the
QCD factorization
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Impact factor for exclusive processes
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Impact factor for exclusive processes
Theoretical motivations

QCD in perturbative Regge limit

@ In this limit, the dynamics is dominated by gluons (dominance of spin 1
exchange in ¢ channel)

@ BFKL (and extensions: NLL, saturations effects, ...) is expected to
dominate with respect to Born order at large relative rapidity.

: reggeon

Born order: BFKL ladder:

effective vertex

6/35



Impact factor for exclusive processes
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Impact factor for exclusive processes
kT factorization

impact representation

Sudakov decomp.: k =a p1 + B p2 + k| k = Eucl. < k; = Mink.

d*k

M — s / méyx(ql)ﬂp(zﬁ)(k7 r— ]{7) (I)",V’X(QZ)"P(Z?s)(71457 —r + E)

The 77 1(q)g(k1) — pr.r g(k2) impact factor is normalized as

L [dr Disc,, SW ITPI(E?),

q)’W _V‘(E ) ’Y I 28 5

with k = (g + k)2 =Fs— Q> — k2
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Impact factor for exclusive processes
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Impact factor for exclusive processes
Gauge invariance within subleading twists

Gauge invariance

@ QCD gauge invariance (probes are colorless)
= impact factor should vanish when k — Oorr —k — 0

@ In the following we will restrict ourselve to the case t = timin, i.e. torT =0

2 2
k1= 7H+QS R o ks

K 2
S po + ko,

T
N}
Il

This kinematics takes into account skewedness effects along po
t = tmin = restriction to the transitions

0 — 0 (twist 2)
{ (+or-) — (+or-) (twist3)

@ At twist 3 level (for v7 — pr transition), gauge invariance is a non trivial
statement which requires 2 and 3 body correlators
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Collinear factorization
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Collinear factorization
Light-Cone Collinear approach

Ellis+Furmanski+Petronzio 83; Efremov+Teryaev 84; Anikin+Teryaev 03

@ The impact factor can be written as

@:/d“z---tr[H(l...) S(---))

hard part soft part

@ At the 2-body level:
Sl = [ d'z e om0 0) 3(2)/0)
@ H and S are related by [ d'l and by the summation over spinor indices
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Collinear factorization
Light-Cone Collinear approach: (2-body case)

1 - Momentum factorization (1)

@ Use Sudakov decomposition in the form (p = p1, n =2ps/s =p-n=1)

b = ypu + L+ P, y=lon
scaling: 1 1/Q 1/Q?
@ decompose H (k) around the p direction:
OH(l )
H(l) = H(yp) + 81() (I—ypa+... with (I —yp)a~Ils
@ l=yp

@ In Fourier space, the twist 3 term [ turns into a derivative of the soft
term

= one will deal with [ d*z e="*(p(p)|1(0) i 8a<—£1/7)(z)|0>
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Collinear factorization
Light-Cone Collinear approach: (2-body case)

1 - Momentum factorization (2)

@ write

d*l— d*1 5(y —1-n) dy

o [d*16(y —1-n) is then absorbed in the soft term:

(quY: aigqt?)

/ 150y — 1) / a2 e T (p(p)(0) (1, i 01 )d(2)[0)

@
2

/% e~ (p(p)|¥(0) (1, i Z)@(An)m)

(5~ 1-m) = [ et 5

e / d*2 6@ (= = ) (p(p)[$(0) (1, i 0 )%(2)[0)

o [ dy performs the longitudinal momentum factorization
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Collinear factorization
Light-Cone Collinear approach: (2-body case)

2 - Spinorial (and color) factorization

@ Use Fierz decomposition of the Dirac (and color) matrices 1(0) ¢(z) and

W(0)i D1 b(2):

@ @ has now the simple factorized form:
P = /dm {tr[Hl,g(cnp) ) Siq(x) +tr [0 Hyq(xp) T) E)LS};@(J:)}

T' = * and +* +® matrices

Shae) = [ 52 o) g 0m) T (0) 0}
0u8k@) = [ D) in) Ti 01 $(0)0)

o
@ choose axial gauge condition for gluons, i.e. n- A =0 = no Wilson line
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Collinear factorization
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Collinear factorization
Light-Cone Collinear approach: (3-body case)

Factorization of 3-body contributions

@ 3-body contributions start at genuine twist 3
= no need for Taylor expansion

@ Momentum factorization goes in the same way as for 2-body case

@ Spinorial (and color) factorization is similar:
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Collinear factorization
Parametrization of vacuum—to-rho-meson matrix elements (DAs): 2-body correlators

2-body non-local correlators pL wist2
kinematical twist 3 (WW)
T genuine twist 3
@ vector correlator genuine + kinematical twist 3

) E()50)/0) Zmy £ [o1() (€ b+ 050 €5
@ axial correlator

(p(p )Iw(Z)vwm(O)\O) My fpi0a(y) eurss e>\ bp s

@ vector correlator with transverse derivative

DB i O 9(0)[0) Z my fo 0T (4) peT

@ axial correlator with transverse derivative
—

(DD (27571 O D(0)|0) Z 1m0y £ 05 () P Earps €X' Pa s,

where y (7 = 1 — y) = momentum fraction along p = p; of the quark (antiquark) and

z f()l dyexp[iyp - z], with z = An

= 5 2-body DAs
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Collinear factorization
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Collinear factorization
Parametrization of vacuum—to—-rho-meson matrix elements: 3-body correlators

3-body non-local correlators genuine twist 3

@ vector correlator

(p(0)| (1) 709 AL (22)9(0)[0) 2 my £ B(yr, o) puerl

@ axial correlator

— f . *
(p(P)|1(21)¥57ug A (22)0(0)[0) = m, f3 i D(y1,y2) Pu Earps €' Do s,

where y1, ¥2, y2 — y1 = quark, antiquark, gluon momentum fraction
Fy 1 1
and = [dyr [dys expiyip-2z1 +i(y2 —y1)p- 2z2], with 212 = An
0 0

= 2 3-body DAs
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Collinear factorization
Symmetry properties

From C-conjugation on the previous correlators, one gets:

@ 2-body correlators:

pily) =  wi(l-y)
e3y) = ws(l-y)
waly) = —pa(l—y)
eily) = —pi(l-y)
ealy) =  @al—y)
@ 3-body correlators:
B(yi,y2) = —B(l—y2,1—y1)
D(y1,y2) = D1 —y2,1—11)
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Collinear factorization
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Collinear factorization
Equations of motion

Equations of motion twist 2
kinematical twist 3 (WW)

genuine twist 3

@ Dirac equation leads to genuine + kinematical twist 3

—

(D (0)%(0)abs(2)) =0 (i Dy=i dp +A,)
@ Apply the Fierz decomposition to the above 2 and 3-body correlators
_ 1 - 1 -

= (W(@)¥(2)) = (@)1 (@) + 4 () 15708 (@) 10 75-
@ = 2 Equations of motion:

gres(y1) + 1 oalyr) + o1 (v1) + 0a(yr)

+/dy2 [C:}Y Bly1, y2) + ¢ D(yn, yz)] =0 and (91 < y1)
@ In WW approximation: genuine twist 3 =0i.e. B=D =0

ehly) =51y =P ed ™ () — e ()]

N

el () =3[y —m ey " (W) — X" ()]
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Collinear factorization
n—independence

A minimal set of DAs

@ The non-perturbative correlators cannot be obtained from perturbative
QCD ()
@ one should reduce them to a minimal set before using any model

@ this can be achieved by using an additional condition:
independency of the full amplitude with respect to the light-cone direction
n

= we prove that 3 independent Distribution Amplitudes are needed:

01 (y) «— 2 body twist 2 correlator
B(y1, y2) <« 3 body genuine twist 3 vector correlator

D(y1, y2) <« 3 body genuine twist 3 axial correlator
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Collinear factorization

n—independence

n—independence in practice

n p
@ n*, withn? =0, n-p=1Iis not fixed uniquely
, 7—7:2 k2
n* —n't=nt+ Lpt ok ko
@ pr polarization: e;T = e;‘L —pue’-n
@ for the full factorized amplitude:
dA d 0 * 0
=H®S — =0, where — = — +e,——
A ® dn# dn#  On# + " 9(ex - n)

@ rewrite hard terms in one single form, of 2-body type: use Ward identities
Example: hard 3-body — hard 2-body

tr [Hap(y1,y2) p° $] By, y2) = (tr [H2(y1) ] — tr [H2(y2) #)) B(y1, v2),

Y1 — Y2
U1 U1 U2
(y1 —y2) e = -
Y2 — Y1
T—y2 T-y1 T-y2
@ thus, symbolically,
ds
dnt
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Collinear factorization
n—independence

Constraints from n—independence  twist 2
kinematical twist 3 (WW)

genuine twist 3
genuine + kinematical twist 3

@ vector correlators

d
T@?(yl) =—p1(y1) + p3(y1)
m
: d
et e
Y2 — U1
0

(B(y1,y2) + B(y2,v1))

@ axial correlators

1

d 7 A/ dys2
= 1) = — 2 (D(y1,12) + D(1:
dylsoA(yl) paly) — G y2_y1( (y1,92) + D(y2,41))
0
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Collinear factorization
A set of independent non-perturbative correlators

twist 2

kinematical twist 3 (WW)
genuine twist 3

genuine 4+ kinematical twist 3

Solution

@ the set of 4 equations (2 EOM + 2 n-independence relations) can be
solved analytically

@ 7 — 3 independent DAs
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Collinear factori

Wandzura-Wilczek

w(y) ="MW+ (W), ely) = es(y), eal), ¥ (), ¢ay)

where "W () and 9" (y) are contributions in the so called
Wandzura-Wilczek approximation and the genuine twist-3 contributions.

WW = vanishing 3-parton distributions B(y1,y2) and D(y1,y2), i.e. which
satisfy the equations

g3 )+ el ) + et ) +ea " () =0

yres () —yed V() =t V) +ea () =0,

d TWW Ww d TWW Ww
——pr () =—e(y) tes (), o—ea () =va ().
dy1 dy1
Solutions:
1| a Fd 1| P Fd
v v v v
©% Wy = 5 / < e1(v) 7/ - @] oy W (y) = 5 / ?w(v)Jr/ - #1(@)
0 Y1 0 Y1
From these expr. the remaining @‘AVW T and LPWW T are

y1 1
1 dv dv
0% "W () = 3 [51/ —e1(v) — y1/ w(v)} ,
v v
0 Y1

vy 1
1 dv dv
o W) = 5 —171/ T<P1(1))+y1/ —p1(v)]| -
v v
0 22/35
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Collinear factorization
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Genuine twist-3

T (1) + 71 %" (1) + 1 T () + 4 7" ()
1

—/dyz [Cs,v B(y1, y2) + G5 D(ys, yz)]

0

T T
o3 () — e () — e T ) a7 ()
1

—/dy2 [—Cg/ B(yz2, y1) + ¢35 D(y2, yl)] .

0
d en en d
21 ) = T () — & / —2_ (B(y1,y2) + By, 1)) ,
Y1 Y2 —
d T gen ge / dy2
— = D .
dyr £ (1) =i (1) — G - y1 D(y1,y2) + D(y2,91))
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Collinear factorization
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Solution for genuine twist-3

1

1 u
_%/%M |:/dy2%(<§/3 — ¢4 D) (yo, u) — / yij (G B = G'D)(u, y2)
y 0

- [ B - D), u)}
0

Y2
Y1 1 1
1 [du d v A _ dy2 v A
3 [ |t B4 D)) - [ (e B G D) )
0 u u
dy2 v
- (G B+ (' D)(y2, u)| -
Y2 —u
0
Finally, the solution for @] <"
/ [ [ g, Bl 2)
o1 0) = [dugtmw - ¢ [ [ S0
Y2 — Y1
0 0 Y
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Computation and results
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Computation and results
Computation of the hard part

2-body diagrams

@ without derivative

I e

} twist 2 (yf — pr)

% § twist 3 (yp — pr)
3

9 practical trick for computing 91 H : use the Ward identity

= . where ——=
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Computation and results
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Computation and results
Computation of the hard part

3-body diagrams

9 “abelian” type

O

@ “non-abelian” type

et
il
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Computation and results
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Computation and results
Recall:

~vi, — pr impact factor

ab
(P"/L—’PL(E2) 269 fp 6 /dy%?l

pure twist 2 scaling (from p-factorization point of view)

’Q2+k2
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Computation and results
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Computation and results
Results:

vt — pr impact factor:

Spin Non-Flip/Flip separation appears

QTP (K) = @117 () T g+ 07T (k) T
where
Thy =—(ey-€) and Ty = - 2)2(6 £ + (ew; :
+ - -
— — +

+—+

—_ s —

non-flip transitions { flip transitions {
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Computation and results
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Computation and results
Results:

qﬂ’”frﬂ’T(,g) pure twist 3 scaling (from p-factorization point of view)
n.f. £

eg2mpfp 59 2/d (E2+2Q2y1 (1*y1))ﬁ2
2VZQ? 2N, () (B2 + Q21 (1— y1))2

vi(1—y1)k? [ (2 = Ne/Cp)Q?
E2+Q%2y1 (1 —wy1) [E2(y1 —y2+ 1) + Q% y1 (1 —y2)

[(2y1 — D] (1) + vﬁ(yl)]

+2/dy1 dya [Cé/ B(I‘/lyy2>*<é4 D (yl-,yz)]

Ne¢ Q2 v A 2+NC/CF
-—= - B (y1, v D (y1,1 e
Cr R T 0% (va y1)] 2/dy1 dya [Cg (y1,y2) + ¢35 D (y1, .1/2)] [ T

1 Q? ( (2 Ne/CF) y1 k2 B 2)
k2 +Q%y1 (1 —y1) \k2(y1 —y2 + 1)+ Q%y1 (1 — y2)
JNe i —w2) (A —v2) Q*
Cr 1—-y1 E2 (1 —y1) + Q% (y2 —y1) (1 — v2)
and
PN 2 6ab k2 QZ
& T T 2 :_eg mpfp 4 L T _ _ T
k2

—4/dy1 dyzm {C?D(yuyz)(—yl +y2—1) +C§/B(y1,y2) (y1 +y2 — 1)]
N [ (2= N/CFr)Q? _ Ne Q? ]}

E2(y1 —y2+1)+Q%2y1 (1 —y2) Cp y2k?+ Q%y1 (y2 — v1)
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Computation and results
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Computation and results
Results:

WW limit
@ WW limit: keep only twist 2 + kinematical twist 3 terms (i.e B =D = 0)

@ The only remaining contributions come from the two-body correlators

@ non-flip transition

1
Vheer a0 —empfp 6% TV +2958 @+ 02V W)
q’n.f. (&%) - 2v2Q2 2N, O/dy vy
2k? (EQ +2Q2yﬂ) ((y DT VW () + LWV (J))
Yy (k2 +Q2y(1—y))>
which simplifies, using equation of motion:
N TWW _ww TWW
[ vl =0T W)+ 205 @)+ 5 )] = 0
1 2 2 2
Yr—eT 2, _ eMplp ab 2k (E +2Q yy) _ TWW TWW
o7 e = 2NCO/ et CURR EARURT S WOl
o flip transition:
1
Ve g2y emplfp st ¢ 2k% Q? B TWW TWW
o) = - 2Nc0/ gy 2w i )]
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Computation and results
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Computation and results

@ The obtained results are gauge invariant

P7TPT (0 when k — 0

@ v — pr impact factor is gauge-invariant only provided the 2 and 3-body
contributions have been taken into account in a consistant way

@ Our results are free of end-point singularities, in both WW approximation
and full twist-3 order calculation
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Computation and results
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Computations and results

@ Comparison with a fully covariant approach by Ball+Braun et al:
The dictionnary between the two approaches within a full twist 3
treatment is now established:

Viyi, 1 —y2, y2 —y1)

Blyi, y2) = -— |
Y2 —y1
D(y1, y2) = _ Ay, 1—32’ Y2 — Y1)
Y2 — Y1
eily) = o)
p3(y) = g(v)(y) 7
(a)
oaly) = —199°0)

4 Oy
@ We performed calculations of the same impact factor within the covariant

approach by Ball+Braun et al:

calculations proceed in quite different way : eg. no ¢ 4—DAs but
Wilson line effects are important !!

We got a full agreement between two approaches
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Conclusions

Conclusions

@ We have performed a full up to twist 3 computation of the v* — p impact
factor, in the t =ty limit.

@ Our impact factor respects gauge invariance. This is achieved ONLY after
including 2 and 3 body correlators.

@ It is free of end-point singularities
(this should be contrasted with standard collinear treatment, at moderate
s, where kp-factorization is NOT applicable: see Mankiewicz-Piller).

@ We relied on the Light-Cone Collinear approach
(Ellis + Furmanski + Petronzio; Efremov + Teryaev; Anikin + Teryaev),
which is non-covariant, but very efficient for practical computations.

Agreement with the covariant approach by Ball et al
@ This Light-Cone Collinear approach is systematic, and can be extended to
any process, including higher twist effects (but does not preclude potential

end-point singularities)
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Conclusions

Phenomenological prospects:

@ We have all ingredients necessary to estimate:

e elements of the density matrix

e how important are § g g contributions compared to ¢ ¢ ones

e generalizations for ¢ # 0
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