Cosmology with Wide Field Astronomy

Cosmology in 5 minutes...

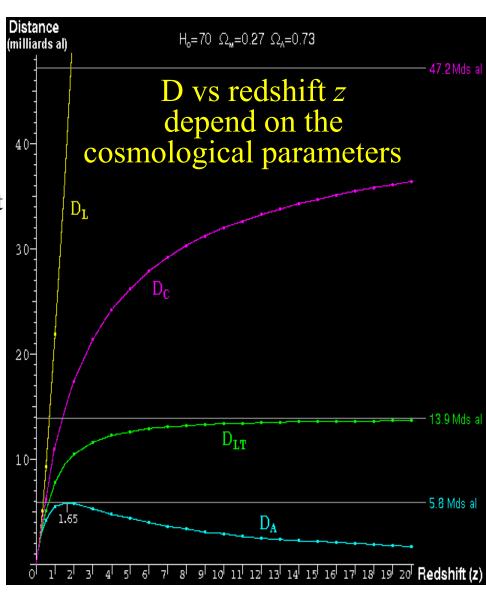
- **History** (past and future)
- Content
- Structure

of the Universe

What cosmology with wide field optical surveys can say about particle physics?

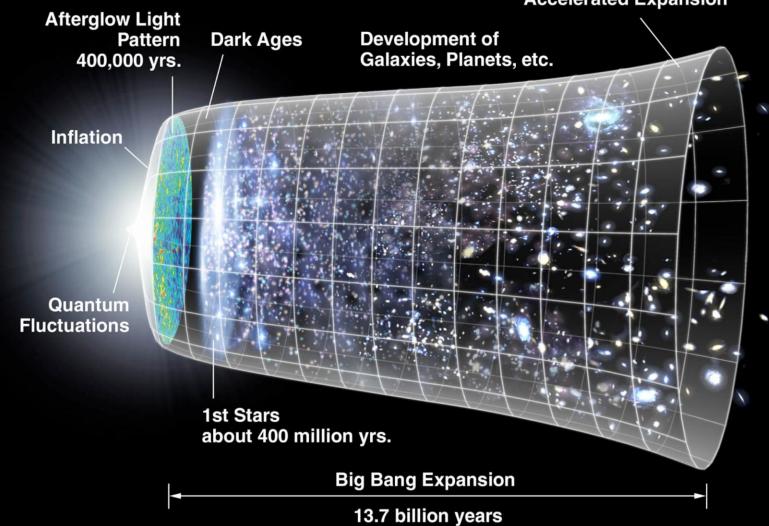
- Inflation theory
- Hidden matter
- Vacuum energy
- Neutrino mass

Observables:


Redshift z

Position (2 angles + Distance)

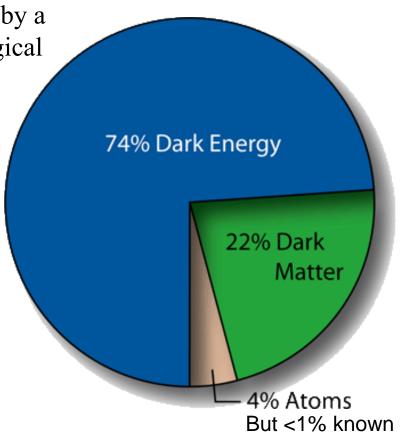
Time


The 4 cosmological distances

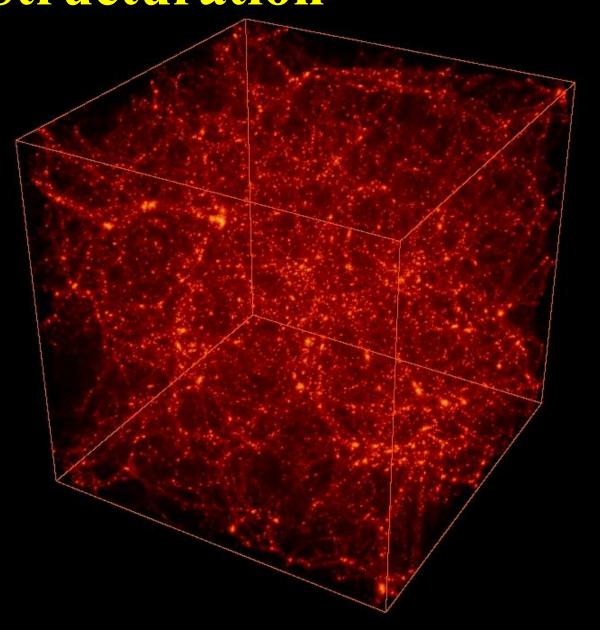
- Comobile distance d_C
 Gives the present position of the object (even observed in a past situation)
- Luminosity Distance $\mathbf{d_L} = \mathbf{d_C}(1+\mathbf{z})$ depends on the repartition surface of the light
 - Used with luminosity markers
- Galaxies appear fainter than in a static Universe
- Angular distance $\mathbf{d_A} = \mathbf{d_C}/(1+\mathbf{z})$ Galaxies were closer at the epoch of the light emission.
 - Used with size markers
- Galaxies appear larger than in a static Universe
- Distance of photon propagation $\mathbf{d}_{\mathbf{LT}}$

The cosmic history

Dark Energy Accelerated Expansion



The content of the Universe


Current observations in favor of a flat Universe

- Vacuum energy (quantum fluctuations)dark energy ?
- State equation for this new fluid :
 p = w(z) >

w(z)=-1 for cosmological constant $\not\subset$

Structuration

Cosmological parameters

Table A.1: Cosmological parameters from WMAP five-year results[†]

Symbol	Value	Remarks
w_0	-1	dark energy equation of state at $z = 0$
w_a	0	rate-of-change of the dark energy EOS as in $w(a) = w_0 + w_a(1-a)$
$\omega_{ m m}$	0.133	physical matter density $\omega_{\rm m}=\Omega_{\rm m}h^2,\Omega_{\rm m}=0.258$
$\omega_{ m b}$	0.0227	physical baryon density $\omega_b = \Omega_b h^2$, $\Omega_b = 0.0441$
θ_s	0.596°	angular size of the sound horizon at the last scattering surface
$\Omega_{\mathbf{k}}$	0	curvature parameter
au	0.087	optical depth to scattering by electrons in the reionized
		intergalactic medium
Y_p	0.24	primordial helium mass fraction
n_s	0.963	spectral index of the primordial scalar perturbation power spectrum
α_s	0	running of the primordial scalar perturbation power spectrum
Δ_R^2	2.13×10^{-9}	normalization of the primordial curvature power spectrum at
+ (17)		$k^* = 0.05{\rm Mpc^{-1}}$ ($\sigma_8 = 0.796$ or $\Delta_R^2 = 2.41\times 10^{-9}$ at $k^* = 0.002{\rm Mpc^{-1}}$)

[†] The reduced Hubble constant h=0.719 and the present equivalent matter fraction of dark energy $\Omega_X=0.742$ are implicit in this parametrization, meaning that either one of them can replace θ_s or any parameter that affects θ_s .

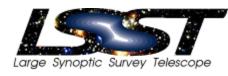
Cosmological probes

Supernovae: measure the apparent luminosity of the SNIa as a function of $z \to d_L(z) \to H(z)$

Gravitational weak lensing: measure distorsions of the galaxy orientation distribution $\rightarrow d_A(z) \rightarrow$ structures

Strong lensing time delays : $\rightarrow d_{LT} \rightarrow H_0$

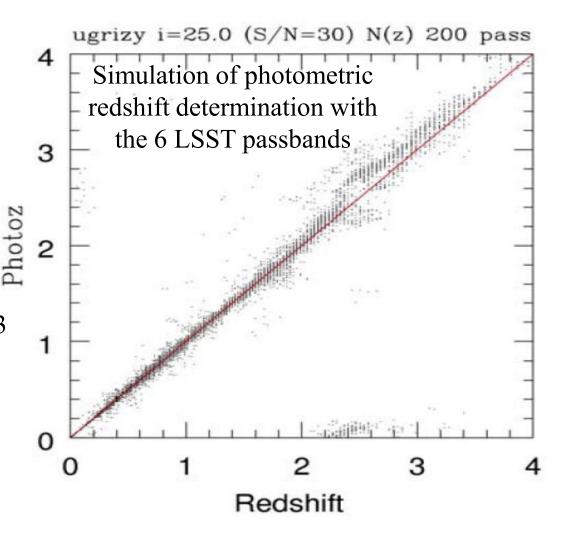
Galaxy clusters: cluster counting and spatial distribution $\rightarrow d_A(z) \rightarrow H(z)$, structure formation


Baryonic Acoustic Oscillations (BAO): measure a characteristic scale in matter spatial distribution $\rightarrow d_A(z) \rightarrow H(z)$

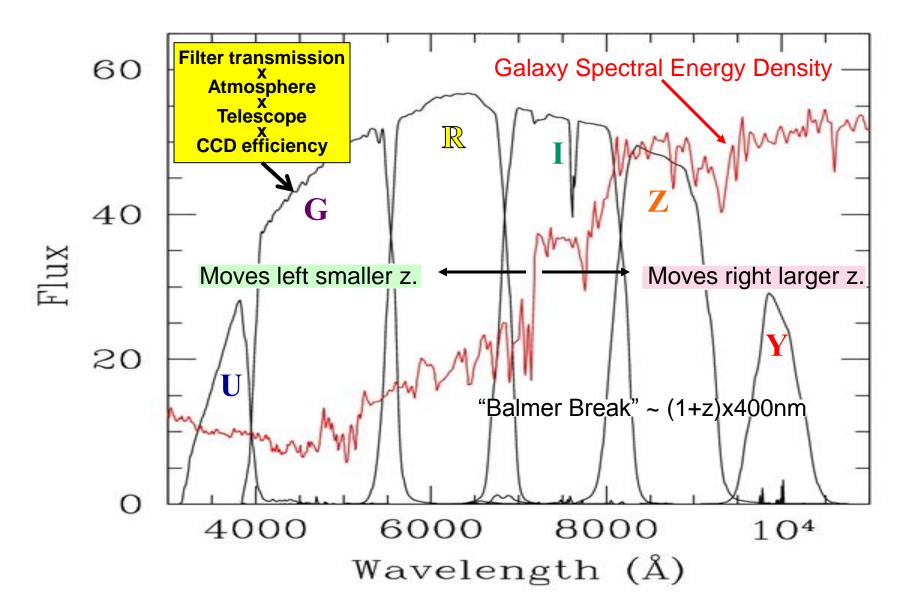
Integrated Sachs-Wolf effect: descent and ascent of photons in a potential well that varies over time

Cosmology with optical surveys: aims and challenges

- **History**: go to ancient times
 - Baryonic Acoustic Oscillations
 - Supernovæ => photometry, time
- => large redshift z
- => z determination
- Content: search for mass (even local)
 - Lensing (macro, micro, weak) => photometry, astrometry, time
 - Other indirect signatures of matter (velocity fields...)
- Structuration: statistical studies of large structures
 - => large volumes
- Tests of the cosmological hypothesis: check anisotropy
 - => large volumes & angular coverage


Note: determination (z, photometry, astrometry) means *precise* determination

Redshift determination


Photometric-z vsSpectroscopic-z

LSST: Calibration until z=3
-> need 75 000 spectra
(~50% already exist)

Photometric Redshift

Cosmological Surveys

• Running / Near-future

- DES, Dark Energy Survey: 5000 deg2, tel. 4m → SN, BAO
- BOSS
- HETDEX: 420 deg², tel. 9.2m, BAO spectro-z<3.8
- HSC/WFMOS
- Pan-STARRS4: 4x1.8m tel., SN

• After 2015

- LSST: 20000 deg², tel. 8.4m -> SN, BAO, weak-lensing
- **BigBOSS**: 10000 deg², tel. 2.4m, BAO 0.6<spectro-z<2.3
- JDEM/Euclid (space) -> BAO
- SKA (radio) -> BAO
- Constellation-X

LSST: Large Synoptic Survey Telescope

Optical telescope 8.4 m diameter with wide-field camera (3.5°)

• In Chile (Cerro Pachon)

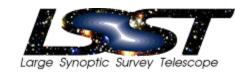
- Concept from '90s
- 3.2 Gpixels camera
- Readout 2s
- 6 filters (ugrizy)
- Weak lensing up to $z \sim 3$
- SNIa up to $z \sim 1$
- Baryonic oscillations
- Galaxies and galaxy-clusters
- Transients

Large Synoptic Survey Telescope

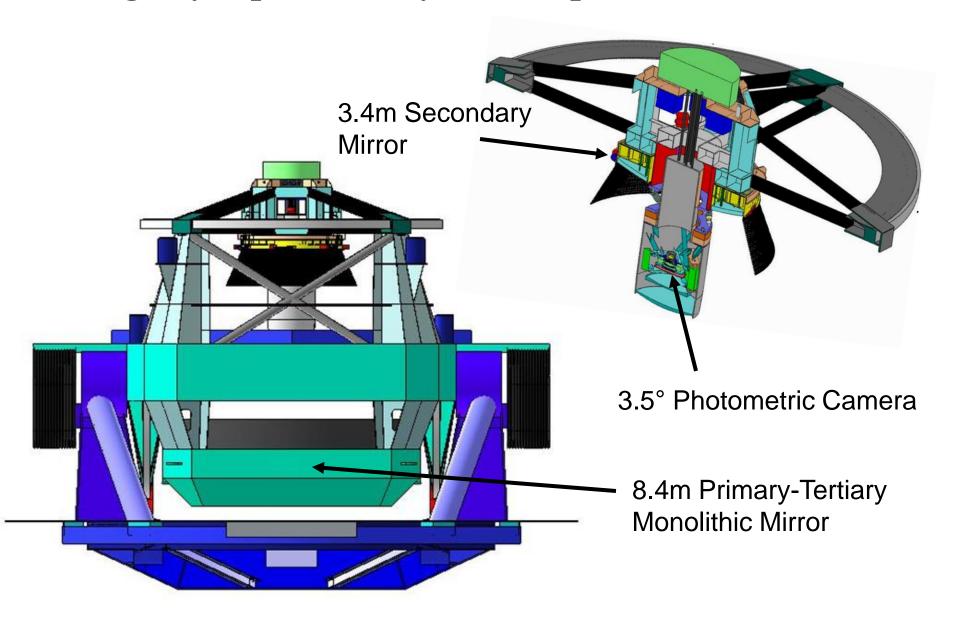
LSST "mission"

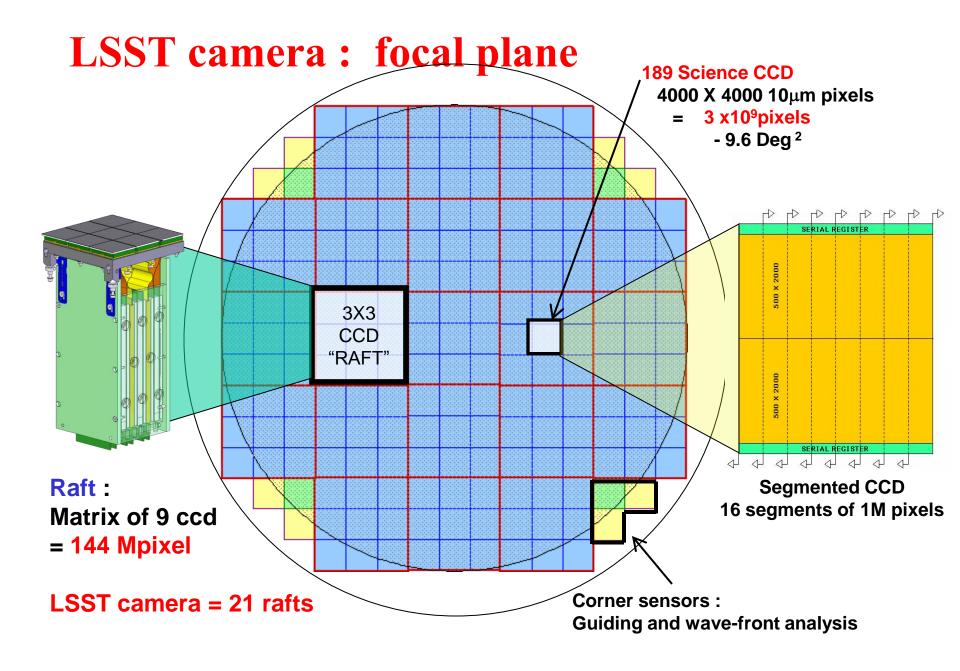
- •Photometric survey of half of the sky (~ 20 000 sq. deg.)
- Complete coverage every 4 nights during 10 years
- One 10 sq. deg. field every 40 seconds
- Fast alert system (60s) for detection of violent phenomenon

<u>Deliverables (cosmology)</u>


Archive more than $3x10^9$ galaxies with photometric redshifts up to z=3 Detection of 250 000 SN Ia per year (with photo-z < 0.8).

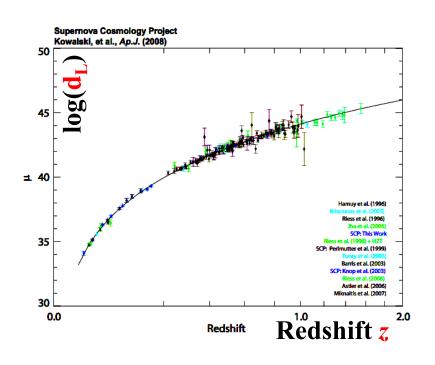
« 4D » mapping

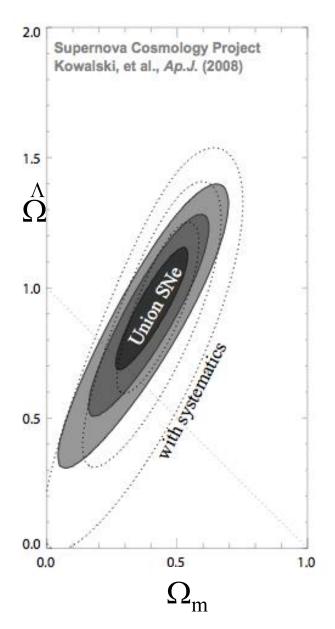

 (α,δ) position on the sky


Redshift z

Time variations (SN, lensing, AGN...)

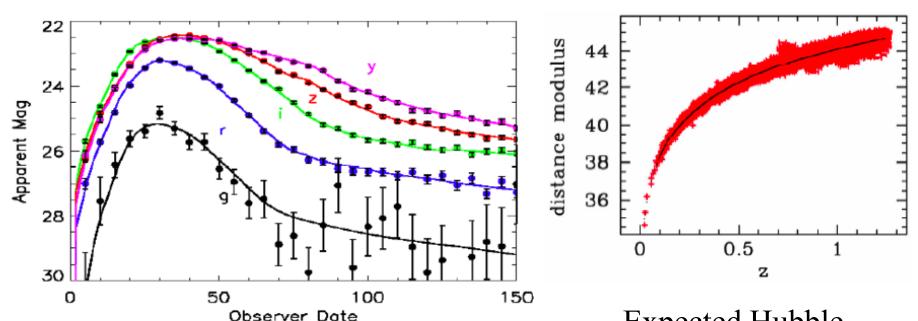
Large Synoptic Survey Telescope


Cosmological probes for optical surveys

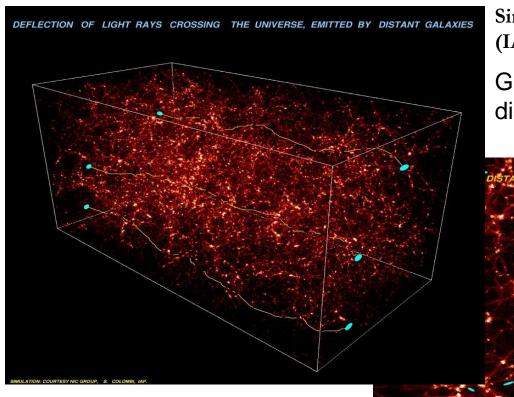

Supernovae: measure the apparent luminosity of the SNIa as a function of $z \to d_L(z) \to H(z)$

- **Gravitational weak lensing**: measure distorsions of the galaxy orientation distribution $\rightarrow d_A(z) \rightarrow$ structures
- Strong lensing time delays : $\rightarrow \mathbf{d}_{LT} \rightarrow \mathbf{H}_0$
- Galaxy clusters: cluster counting and spatial distribution $\rightarrow d_A(z) \rightarrow H(z)$, structure formation

Baryonic Acoustic Oscillations (BAO): measure a characteristic scale in matter spatial distribution $\rightarrow d_A(z) \rightarrow H(z)$


SN1a: Status

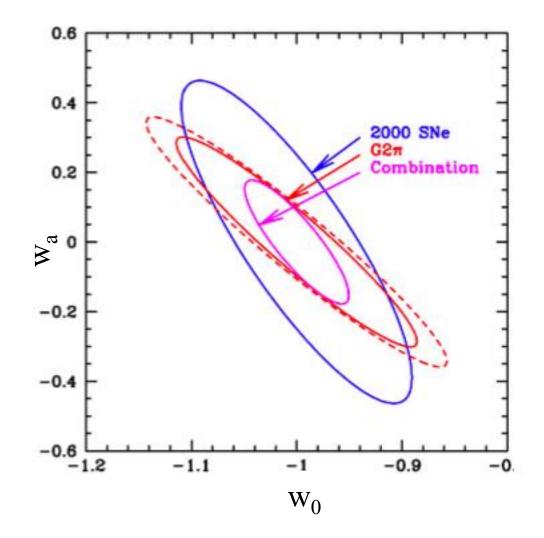
SN1a: Expectations from LSST


250 000 SNIa @ z < 1 per year

Simulated light-curves of a SN1a @ z = 0.832

Expected Hubble diagram with 30 000 SN1a (photo-z)

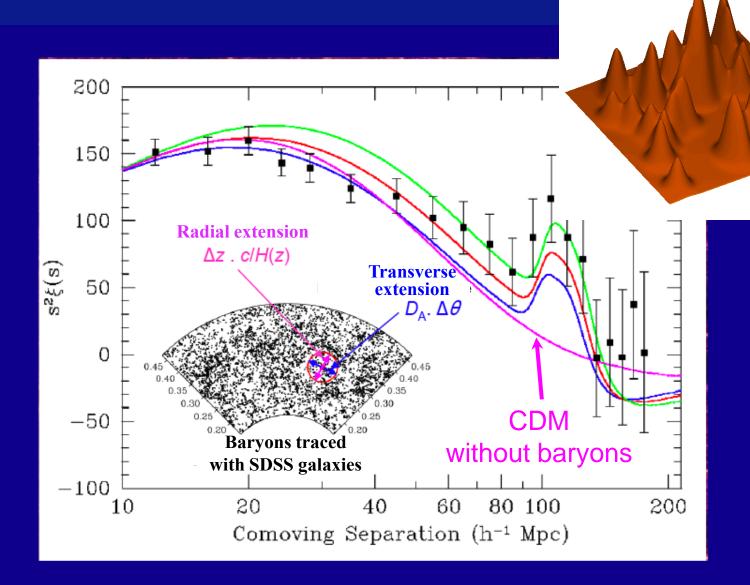
Gravitational distorsions of distant galaxies

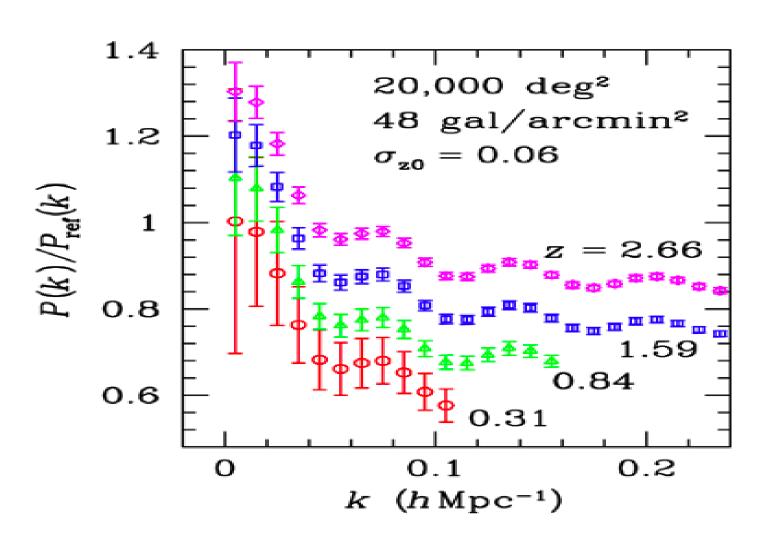

Simulation courtesy of S. Colombi (IAP, France).

Galaxies act as lenses on more distant objects.

Sensitivity to large structures and to the nature of gravitation.

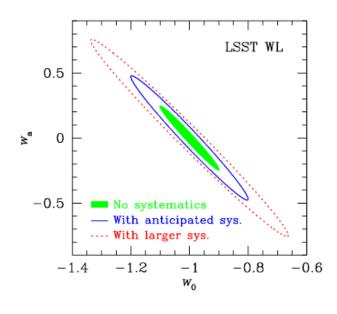
WL+SN: LSST expectations

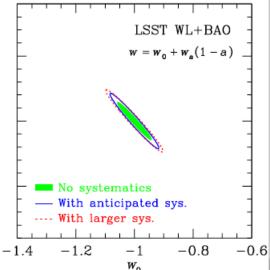

- Measurement of the parameters of the dark energy state equation : $\mathbf{p}/\rangle = [\mathbf{w_0} + \mathbf{w_a} \cdot \mathbf{z}/(1+\mathbf{z})]\rho$
- Expected precision with weak lensing and 2000 SN1a.


BAO: Baryonic Acoustic Oscillations

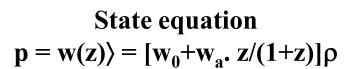
- Inprints of the oscillations of the baryon-photon fluid in the ordinary matter distribution after structure formation
- The baryonic matter distribution follows the dark matter modulation, in structures resulting from density fluctuation growing
- Cosmological probe of standard ruler type (d_A)
 - With a measurement @ $z \sim 1100$ as a bonus (CMB anisotropies)
- Use tracers of baryonic matter: galaxies (LSST) or H_I (radio@21cm) with distinct biases

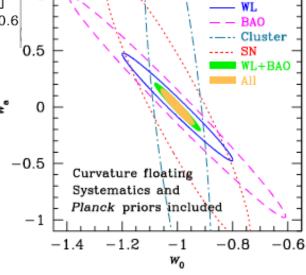
Baryonic Acoustic Oscillations




BAO: LSST expectations

Constraints on Dark Energy

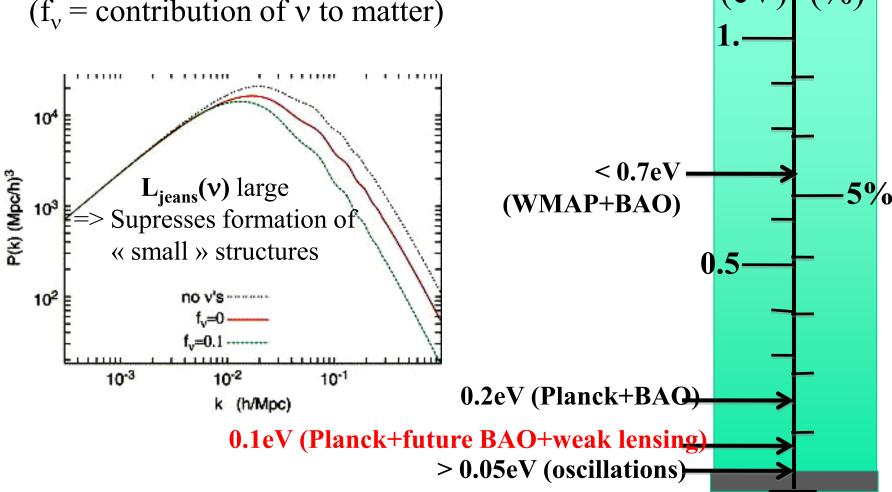

complementarity between probes (LSST)



different techniques have different systematic limitations

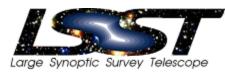
The combination will be significantly more precise than the individual determinations

Neutrino physics


- Since LHC is **the** machine to study the Big-Bang (according to many posters and press-releases)
- Cosmologists now study particle physics with telescopes
 - => Neutrino physics

Neutrino mass

neutrino contribution to density:


$$\Sigma m_v = 94 \text{eV} \ (\Omega_v \text{ h}^2) = 13 \text{eV x f}_v$$

($f_v = \text{contribution of } v \text{ to matter}$)

Conclusions

- Many perspectives connected with particle physics (dark energy and matter, neutrino)
- Complementarity of optical surveys with other astronomical surveys like microwave (Planck) and radio
- LSST A leading cosmological project for the next decade
 - Technology under control
 - Challenges: atmospheric calibration and photometric redshift
 - Every astronomical field is concerned

Complements

LSST collaboration

Brookhaven National Laboratory

California Institute of Technology

Google Corporation

Harvard-Smithsonian Center for

Astrophysics

Johns Hopkins University

Las Cumbres Observatory

Lawrence Livermore National Laboratory

National Optical Astronomy Observatory

Ohio State University

Pennsylvania State University

Princeton University

Research Corporation

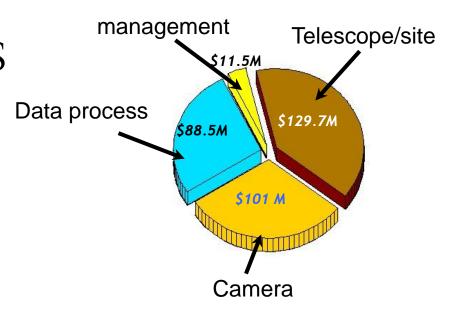
Stanford Linear Accelerator Center

Stanford University

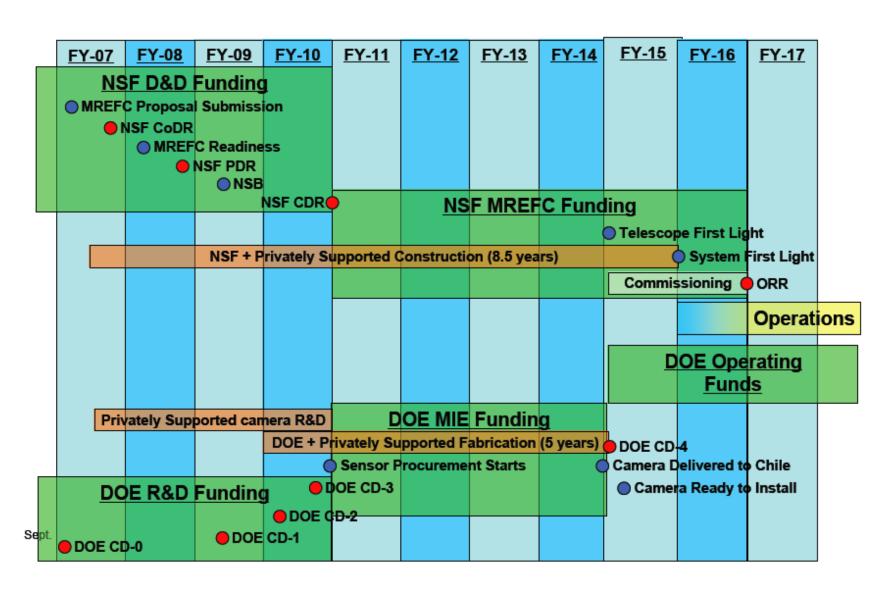
University of Arizona

University of California, Davis

University of Illinois


University of Pennsylvania

University of Washington


+... french connection

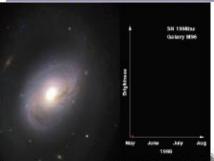
LSST: Planning / cost

- 2008-2011: R&D
- 2011-2017 : Construction
- 2017-2027 : Observations
- Telescope/site: 130 M\$
- Camera: 100 M\$
- Data Proc : 88 M\$
- Operation ~ 30 M\$ / an

Planning (sept. 2008)

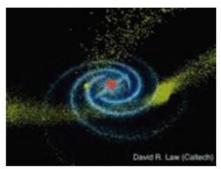
LSST science: 4 domains

Dark Energy-Dark Matter

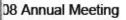

LSST enables multiple investigations into our understanding of the universe

Exploring our Solar System

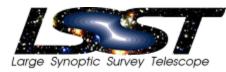
of hazardous NEOs down to 140 m in

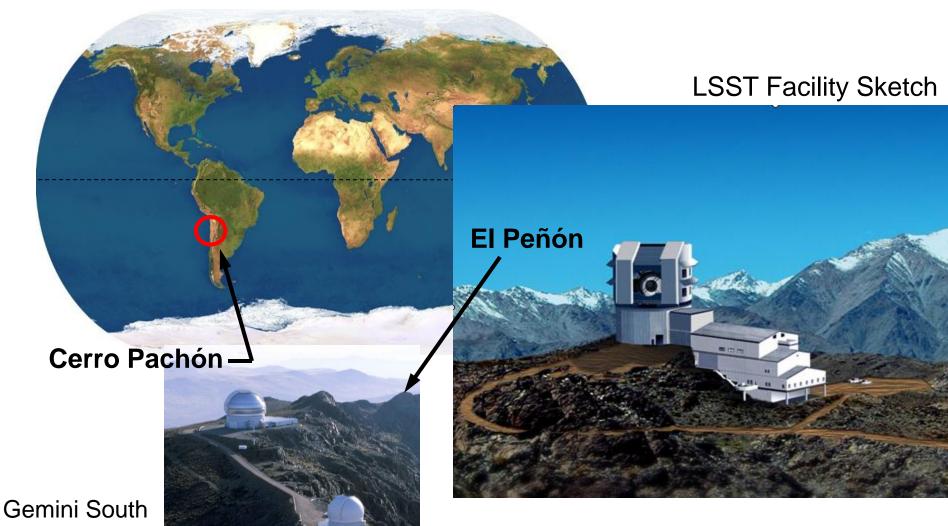

10 yrs

"Movie" of the Universe: time domain

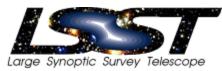

Discovering the transient and unknown on multiple time scales

Mapping the Milky Way

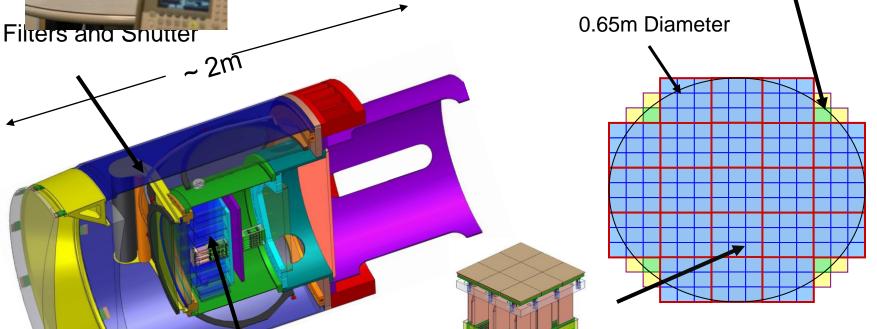

the rich and complex structure of our Galaxy.



LSST Site

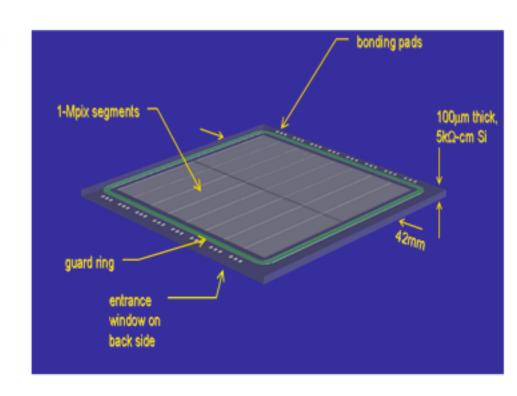

and SOAR

Typical "seeing" on Pachón is 0.7 arc-sec.


Focal Plane Array

3.2 Giga pixels

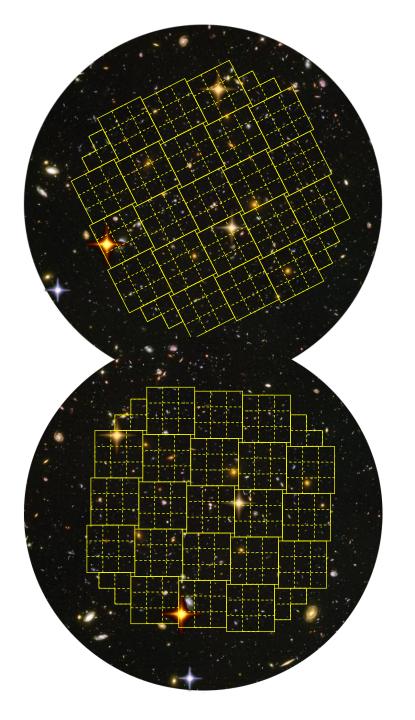
LSST Camera


Wavefront Sensors and Fast Guide Sensors

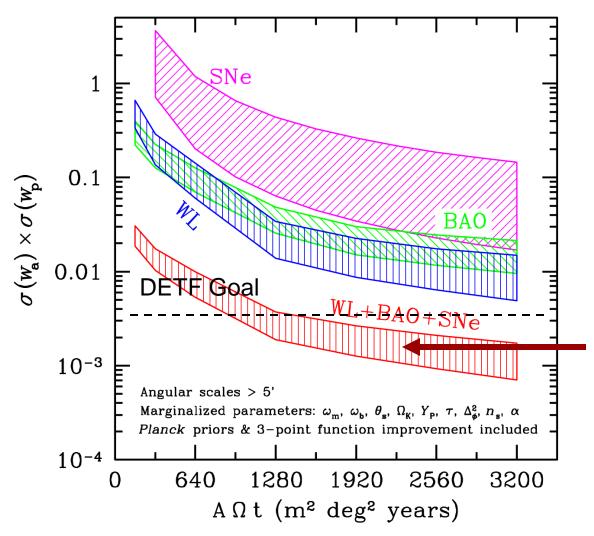
"Raft" of nine 4kx4k CCDs.

Sensors: Reference Design

Reference Design Parameter	Value	Unit
Sensor technology	CCD	
Thickness	75-125	micron
Thickness tolerance	+/- 5	micron
Die size (Raft area per sensor)	42 x 42	mm
Sensor package outside dimensions	41.7 x 41.7	mm
Active area	40 x 40	mm
Fill factor (4-side butt-able)	95	%
Flatness (p-v)	5	micron
Format	4k x 4k	
Pixel size	10 x 10	micron
Point spread function (rms)	3.2	micron
Readout clock frequency	500	kHz
Readout time	2	sec
Readout segmentation	16, vertical	segments
Window (back side) bias	> 40	٧
Read noise	< 6	e-, rms
Dark current	< 1	e-/s/pixel



CCD Design Parameters


- -Thickness optimized for best QE/PSF tradeoff
- -Thin, conductive entrance window to apply bias
- -16-fold segmentation for fast, low noise readout
- -Precision package for flat mosaic assembly

Observational Strategy

- Multi-epoch observations
- 15s exposures
 - Variability studies
 - Co-addition of images taken in various conditions (instrumental and atmospheric)
- Uniform photometric quality
 - In any atmospheric condition
 - Real time measurement of the atmospheric transmission:
 auxilliary telescope

different techniques have different systematic limitations.

The combination is significantly more precise than the individual determinations.

Big astronomical projects

On Earth

- SDSS1-2-3 (Sloan Digital Sky Survey) BOSS / BigBOSS. (2009-2014). Spectroscopic survey. 10000 deg², telescope 2.4m. BAO 0.6 < z < 2.3
- CFHT/Megacam. Photometric survey griz, 288 Mpix CCD-camera, telescope 3.6m. SN
- UKIDSS-VISTA (IR)
- Pan-STARRS (4x1.8m telescopes, 4x1.4 Gpixel cameras)
- LSST (8.4m telescope, 3.2 Gpixel camera)
- SKA, Radio. BAO
- DES): 300 Mgalaxies in 5 bands (grizy) to 24th magnitude. 3 deg2 camera, main survey 5000 dge2, SN1a survey 15 deg2. 520 Mpix CCD camera on CTIO 4m telescope. Start 2011, for 525 nights over 5 years.
- Essence
- ACT
- SPT
- HETDEX: spectrographic survey, telescope 9.2m, 420 deg2, 140 nights, 800000 redshifts
 1.ç<z<3.8, 1000000 redshifts 0<z<0.5, de 2011 à 2013 pour BAO (spectro champ integral)
- AAOmega quasar survey (multispectro sur télescope anglo-australien)

• In space

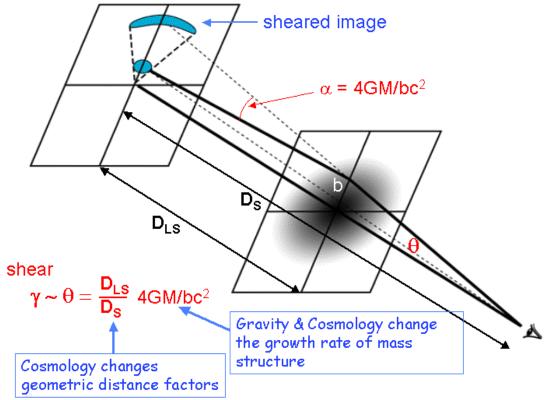
- DUNE
- GAIA
- JDEM/EUCLID
- HERSCHEL: 2.5 telescope, >160 microns; pas très wide field (max. 600 deg2)

Cosmological parameters

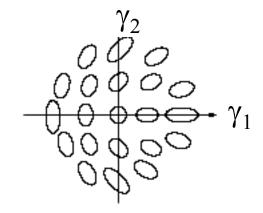
parameter	ACDM	oΛCDM	wCDM	owCDM	owCDM+SN
Ω_m	0.289 ± 0.019	0.309 ± 0.025	0.328 ± 0.037	0.306 ± 0.050	0.312 ± 0.022
H_0	69.4 ± 1.6	66.0 ± 2.7	64.3 ± 4.1	$66.7^{+5.9}_{-5.6}$	65.6 ± 2.5
$D_{V}(0.35)$	1349 ± 23	1415 ± 49	1398 ± 45	1424 ± 49	1418 ± 49
$r_s/D_V(0.35)$	0.1125 ± 0.0023	0.1084 ± 0.0034	0.1094 ± 0.0032	$0.1078^{+0.0033}_{-0.0034}$	0.1081 ± 0.0034
Ω_k		$-0.0114^{+0.0076}_{-0.0077}$	**************************************	-0.009 ± 0.012	-0.0109 ± 0.0088
w	127	-	-0.79 ± 0.15	-1.06 ± 0.38	-0.99 ± 0.11
Ω_{Λ}	0.711 ± 0.019	0.703 ± 0.021	0.672 ± 0.037	$0.703^{+0.057}_{-0.058}$	0.699 ± 0.020
Age (Gyr)	13.73 ± 0.13	14.25 ± 0.37	13.87 ± 0.17	14.27 ± 0.52	14.24 ± 0.40
Ω_{tot}	323	$1.0114^{+0.0077}_{-0.0076}$		1.009 ± 0.012	1.0109 ± 0.0088
$100\Omega_b h^2$	2.272 ± 0.058	2.274 ± 0.059	$2.293^{+0.062}_{-0.063}$	$2.279^{+0.066}$	$2.276^{+0.060}_{-0.059}$
$\Omega_c h^2$	$0.1161^{+0.0039}_{-0.0038}$	0.1110 ± 0.0052	$\substack{2.293^{+0.062}_{-0.063}\\0.1112^{+0.0056}_{-0.0057}}$	$\substack{2.279^{+0.066}_{-0.065}\\0.1103^{+0.0055}_{-0.0054}}$	$0.1110^{+0.0051}_{-0.0052}$
τ	0.084 ± 0.016	0.089 ± 0.017	0.088 ± 0.017	0.088 ± 0.017	0.088 ± 0.017
n_s	0.961 ± 0.013	0.962 ± 0.014	0.969 ± 0.015	0.965 ± 0.016	0.964 ± 0.014
$\ln(10^{10}A_{05})$	$3.080^{+0.036}_{-0.037}$	3.068 ± 0.040	$3.071^{+0.040}_{-0.039}$	3.064 ± 0.041	3.068 ± 0.039
σ_8	0.824 ± 0.025	0.796 ± 0.032	0.735 ± 0.073	0.79 ± 0.11	$0.790^{+0.045}_{-0.046}$

B.A. Reid et al. (2009)

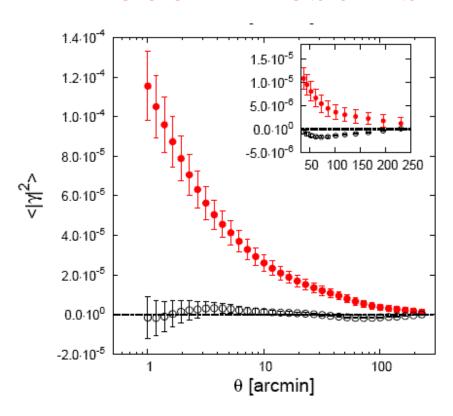
Very stable results over time since WMAP (2003)

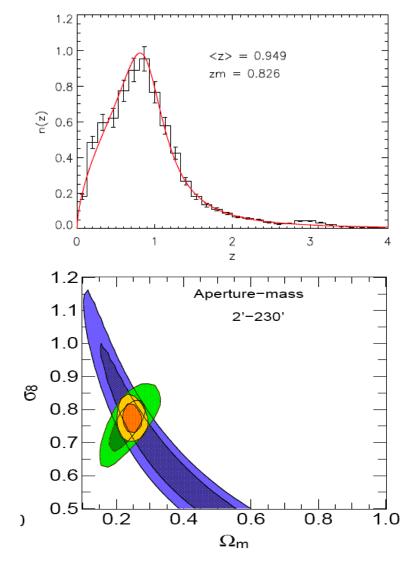

Weak shear

Coherent distorsion of background images

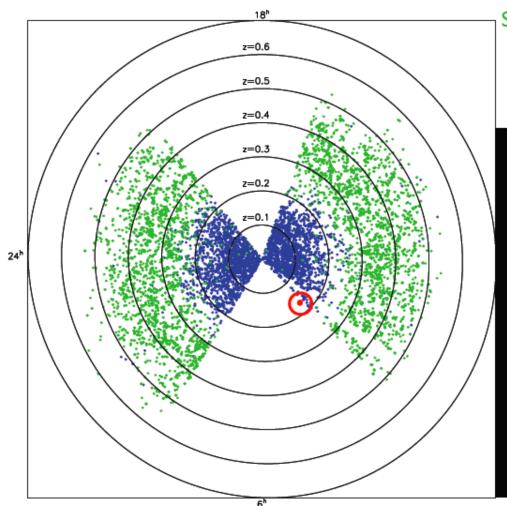

$$A_{ij} \equiv \frac{\partial \beta_i}{\partial \theta_j} = \begin{pmatrix} 1 - \kappa & 0 \\ 0 & 1 - \kappa \end{pmatrix} + \begin{pmatrix} -\gamma_1 & \gamma_2 \\ \gamma_2 & \gamma_1 \end{pmatrix}$$

Magnification

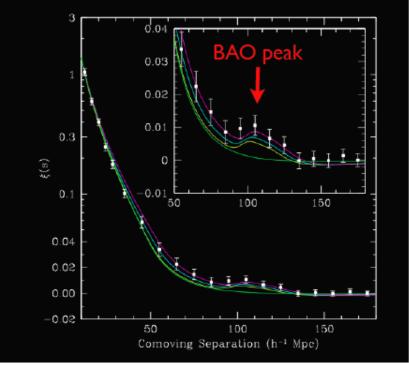

Shear


Complex shear $\gamma = \gamma_1 + i \gamma_2$

Recent results from CFHTLS

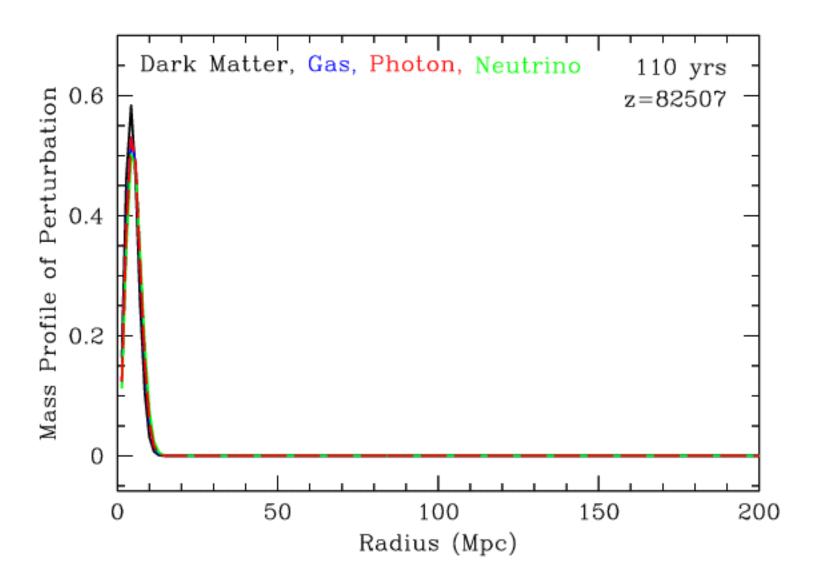


(Fu et al. 2008) 57 deg^2 median z = 0.95



BAO observations from 3-D maps: SDSS

First detection



SDSS luminous red galaxies (LRGs)
Sparse sampled at 10⁻⁴ galaxies/Mpc³
47,000 galaxies over 4000 deg² by 2004
80,000 galaxies over 8000 deg² by July 2008

Eisenstein et al 2005

Baryonic Acoustic Oscillation with microwave, optical and radio-detection

Microwave (CMB)

measures the BAO scale at z = 1100

Optical survey (SDSS)

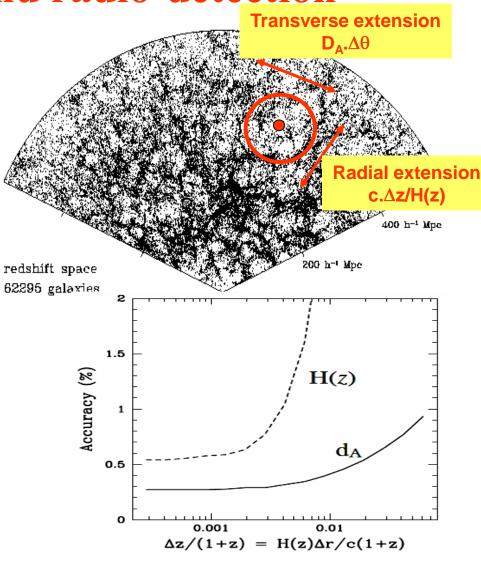
measures the BAO scale at $\langle z \rangle = 0.35$

with ~ 50000 galaxies

Future optical surveys (LSST,

BigBOSS) should measure up to

 $z \sim 1.5$ with up to 10^{10} galaxies but


limited by the z determination

(spectroscopy vs photo-z)

H₂₁ radio-survey

can produce « low-resolution » maps of H_I (galaxies not resolved), but with excellent redshift determination (line of sight correlations easy)

-> BAO radial+transverse scales

