Early Searches for New Physics with Electrons and Muons with the ATLAS Detector at the Large Hadron Collider

Dominique Fortin

On behalf of the ATLAS Collaboration

35th International Conference on High Energy Physics

Outline

- Searches motivated by physics beyond the Standard Model
 - > A new model can predict several signatures
- Analysis starts with search for interesting signatures
 - > The (non-) observation of a signature can constrain several models
- Focus on the following signatures:
 - > W' bosons $\rightarrow \mu \nu$ or $e\nu$
 - > Z' bosons $\rightarrow \mu\mu$ or ee
- Above signatures require the <u>precise measurement of very energetic leptons</u>
 - Status of muon and electron reconstruction from SM W/Z
 - Steps ahead to precise and reliable high p and/or E measurements
 - Summarize expectation from latest MC studies
- Background studies for SUSY searches in channels with leptons

Luminosity

- > As of Tuesday at noon, ~357 nb⁻¹ delivered by LHC Day in 2010
 - > 338 nb⁻¹ recorded by ATLAS
- Luminosity used for analysis in this talk per channels
 - \rightarrow W \rightarrow Iv and Z \rightarrow II: ~17 nb⁻¹ (precision) to 300 nb⁻¹ (observation)
 - > SUSY studies: ~ 70 nb⁻¹

Muon reconstruction in ATLAS

- > Steps for muon reconstruction
 - Track inside the muon spectrometer MS
 - Extrapolate to beam pipe and correct for energy loss in calorimeter
 - Combine with inner detector track
 - For $p_T > 100$ GeV, resolution from MS

- Complex toroidal B-field to be understood
- Alignment of the MS
- > In-situ calibration of momentum scale with collisions:
 - > low mass resonances: $J/\psi \rightarrow \mu\mu$, $Y \rightarrow \mu\mu$
 - ➤ High mass resonances: $Z \rightarrow \mu\mu$ (σ_{obs} ~500 pb)
- Trigger and reconstruction efficiency for high p_T
 - ➤ Tag-and-probe techniques using Z → μμ

Challenges for high p_T muons: alignment

- > 10% momentum resolution for 1 TeV muons
 - ~ 500 microns sagitta in ATLAS MS barrel
 - Chambers have 30-40 micron accuracy
 - Need position of chambers to within 30 microns
- > Chamber installed within 5 to 10 mm of nominal
 - Improve knowledge of position by 2 orders of magnitude: alignment
- Study alignment with cosmic rays
 - Factor 2-3 from nominal performance
- Some regions of the detector need collisions
 - Track-based alignment
 - Validation

Expect nominal alignment with ~ 100 pb⁻¹

Muon spectrum from W $\rightarrow \mu\nu$ study

- > Spectrum shown above is for muons satisfying the W $\rightarrow \mu\nu$ pre-selection
 - > Momentum agreement between MS and ID measurements
 - Combined muon p_T > 10 GeV/c
 - Muon compatible with primary vertex
- MC scaled to number of entries in data
 - Rate dominated by QCD
 - Good shape agreement between data and MC
 - No high p_⊤ outliers

Electron reconstruction in ATLAS

- Steps for electron reconstruction
 - Begins with a seed in the second layer of EM calorimeter using sliding window cluster
 - ID tracks extrapolated to seed and best match used
 - Total transverse energy of cluster is used for E_T
 - Corrected for energy loss in dead material and leakage outside cluster
- Challenge with electrons similar to those with muons
 - \triangleright Understanding fake rate: conversions, π^0 , QCD
 - > EM scale
 - > Testbeam with 10 to 200 GeV electrons
 - ➤ In-situ calibration (similar method as for muon momentum scale):
 - low mass resonances: J/ ψ → ee, Y → ee
 - − High mass resonances: $Z \rightarrow ee (\sigma_{obs} \sim 500 \text{ pb})$
 - Reconstruction and trigger efficiency at very high p_T
 - ➤ Tag-and-probe techniques using Z → ee

R TRIUMI

Electron spectrum in W → ev

- Spectrum shown above is for electrons satisfying the W → ev pre-selection
 - Transverse energy E_T > 20 GeV
 - Exclude transition region between barrel / endcap EM calorimeters
 - > Shower shape + hadronic leakage used as discriminant variables
- MC scaled to number of entries in data
 - Rate dominated by QCD
 - Good shape agreement between data and MC
 - No high E_T outliers

Standard Model W/Z observation at ATLAS

- Observation of 46 W → ev and 72 W → μv candidates for lumi of ~17 nb⁻¹
 - \triangleright Lepton p_T > 20 GeV/c
 - Isolation cut
 - > Electrons: absolute calorimeter isolation
 - > Muons: relative track isolation
 - MET > 25 GeV
 - > Transverse mass: $m_{\rm T} = \sqrt{2p_{\rm T}^\ell p_{\rm T}^\nu (1 \cos(\phi^\ell \phi^\nu))}$
 - Good agreement with MC predictions
- ➤ Observation of 14 Z → II
 - In agreement with expectation of 14.2
- Important results for exotic searches:
 - Analysis strategy for W' searches similar to SM
 - > Will tune MC using SM regions

Details on W/Z to leptons at ATLAS in yesterday's talk from Laurent Serin in session 2

Standard Model W/Z observation at ATLAS

- > Observation of 815 W \rightarrow ev and 1111 W \rightarrow $\mu\nu$ candidates for lumi of ~300 nb⁻¹
 - \triangleright Lepton p_T > 20 GeV/c
 - Isolation cut
 - > Electrons: absolute calorimeter isolation
 - > Muons: relative track isolation
 - MET > 25 GeV
 - > Transverse mass: $m_{\rm T} = \sqrt{2p_{\rm T}^{\ell}p_{\rm T}^{\nu}(1-\cos(\phi^{\ell}-\phi^{\nu}))}$
 - Good agreement with MC predictions
- ▶ Observation of 56 Z → ee and 106 Z → $\mu\mu$ with ~300 nb⁻¹
 - > In agreement with NNLO expected x-section
- Important results for exotic searches:
 - Analysis strategy for W' searches similar to SM
 - Will tune MC using SM regions

Details on W/Z to leptons at ATLAS in yesterday's talk from Laurent Serin in session 2

W' \rightarrow Iv expectation from simulations

- Requirements for W' similar to those used in SM
 - Lepton p_T cut raised to > 50 GeV/c
 - Raise thresholds on MET to > 50 GeV
 - Apply central jet veto
 - Lepton fraction
- Clear separation between signal and background in transverse mass spectrum

M(W') [TeV]

Z' → 2l expectation from simulations

- \gt Z' \rightarrow 2l is a simple clean signature
 - > Two oppositely charged, same flavor leptons
 - \triangleright Lepton p_T > 20 GeV/c
 - Isolation cuts to suppress QCD and ttbar
- Clear separation between signal and background in invariant mass spectrum
- Discovery possible with ~ 50 pb⁻¹

SUSY searches

Entries / 10 GeV

- Aim: Test SM background simulation
 - Data integrated lumi 70 ± 8 nb⁻¹
- Measurements sensitive to SUSY in final states with jets + leptons + MET
 - Sensitive to any model with strongly interacting particles decaying to semi-invisible states
- Supersymmetric mSUGRA SU4 point
 - > m_{squark} ~ 400 GeV (Tevatron limit)
 - > Inclusive SUSY events $\sigma \sim 60$ pb at NLO
- Control regions used for normalizing MC expectations for single lepton channels
 - Pythia QCD:
 - ightharpoonup MET < 40 GeV and m_T < 40 GeV
 - ➤ Alpgen W + jets:
 - \gt 30 GeV < MET < 50 GeV and 40 GeV < m_T < 80 GeV

SUSY searches: single lepton channel

- \triangleright Required 1 lepton with p_T > 20 GeV and 2 jets with p_T > 30 GeV
 - Normalized MC using control regions
- Electron channel: 143 events in data compared to 157 ± 85 from MC
- ➤ Muon channel: 40 events in data compared to 37 ± 14 from MC

SUSY searches: single lepton channel

- > Required 1 lepton with $p_T > 20$ GeV and 2 jets with $p_T > 30$ GeV and MET > 30 GeV
 - Normalized MC using control regions
- Electron channel: 13 events in data compared to 16 ± 7 from MC
 - \triangleright Requiring m_T > 100 GeV: 2 data events survive compared with 3.6 ± 1.6
- Muon channel: 17 events in data compared to 15 ± 7 from MC
 - \triangleright Requiring m_T > 100 GeV: 1 data event survives compared with 2.8 ± 1.2

SUSY searches: single lepton channel

SUSY searches: di-lepton channel

- \triangleright Require a 2nd lepton (electron or muon) with p_T > 10 GeV/c
- MC Alpgen W + ≥2 jets normalized to QCD cross section
 - Checked rates consistent in QCD dominiated control region
 - > 5 GeV < m_{II} < 15 GeV; MET < 15 GeV
- Requiring MET > 30 GeV
 - Two event remains in OS channel, consistent with MC background predictions 2 ± 0.8

Outlook

- First results from W/Z observations and SUSY searches indicate that SM background simulations are well tuned
- Data needed to achieve nominal performance
 - Muon momentum scale
 - EM calorimeter energy scale
- Reconstruct about 500 Z → μμ / ee per pb⁻¹
 - Nominal performance with ~ 100 pb⁻¹
- Simulations show that W'/Z' exclusion possible with
 - > 10 pb⁻¹: $m_{W'} < 1.2 \text{ TeV}$
 - > 100 pb⁻¹: $m_{W'} < 1.6 \text{ TeV}$; $m_{Z'} < 1.3 \text{ TeV}$
 - $ightharpoonup 1000 \text{ pb}^{-1}$: $m_{W'} < 2.5 \text{ TeV}$; $m_{Z'} < 2.0 \text{ TeV}$
- Inclusive SUSY searches with leptons:
 - Probe region beyond Tevatron limits with 50 pb⁻¹
- Sensitive to new physics with leptons this fall!

M(Z') [GeV]
TRIUMF

Backup material follows

Expectation from simulations

- ➤ Assuming 10 pb⁻¹, what can we expect for uncertainties in W'/ Z' to leptons?
 - Reconstruction +ID efficiency for electrons: 5%
 - Reconstruction +ID efficiency for muons: 10%
 - > Energy and momentum scale: 3%
 - > Energy and momentum resolution: 100%
 - Jet energy scale: 10% (enters MET computation in W' searches)
 - Overall, 11-20% experimental uncertainties on signal and backgrounds
- Significance estimator used in next few slides:

$$S = \sqrt{2((s+b)\ln(1+s/b) - s)}$$

mSUGRA SU4 Point

- > SU4 point: low mass point close to Tevatron bound:
 - $> m_0 = 200 \text{ GeV}$
 - \rightarrow m_{1/2} = 160 GeV
 - $A_0 = -400 \text{ GeV}$
 - \rightarrow tan β = 10
 - $> \mu > 0$
- Inclusive SUSY events simulated:
 - $> \sigma \sim 42 \text{ pb at LO}$
 - \triangleright σ ~ 60 pb at NLO

Control regions for scaling 1-lepton

- Nice agreement in shape between MC backgrounds and data in control regions
- Scaled MC using ratio of data/MC yields in control regions
 - > Pythia QCD (LO): MET < 40 GeV; m_T < 40 GeV
 - > Factor for electron channel: 71 / 144.8 = 0.49
 - \triangleright Factor for muon channel: 12 / 18.5 = 0.65
 - \triangleright Alpgen W+jets: 30 GeV < MET < 50 GeV; 40 GeV < m_T < 80 GeV
 - \triangleright Factor 8 / 3.8 = 2.5 ±1.5
 - Limited statistics + compatible with one

SUSY: more plots for 1-lepton channel

