

Top-Quark Studies at CMS

CERN

PARIS 201

Tim Christiansen (CERN) on behalf of the CMS Collaboration ICHEP 2010, Paris 35th International Conference on **High-Energy Physics** tt 2 km 22-28 July 2010 Single-top 4 km **New Physics** Follow all the way CH

to Top to get new

directions

Outline

- Introduction
- Examining the top-quark selection on first 78 nb⁻¹ of pp collision data at $\sqrt{s} = 7$ TeV
 - In the dilepton and lepton+jets channels ($I=e,\mu$) •
 - Aimed (eventually) at first cross-section measurements
 - Not enough data to see any top-quark signal, but a good test of CMS's tools
 - event reconstruction in first data, comparison with simulation
 - testing of data-driven methods for background estimation
- Latest news from the most recent data
 - What we see in 0.25 pb⁻¹ …
- Summary

"The Truth (Quark) is rarefy pure and never simple."

(Oscar Wilde)

Introduction

- Why top-quark physics?
 - Test of not-so-well explored area of the standard model
 - σ, couplings, rare decays, prod. properties
 - The most exotic of all known elem. particles
 - Important background to many searches, etc …

- Contains/tests ~all major features of the reconstruction
 - leptons of all kinds, light and heavy jets (*b*-tagging), missing transverse energy (MET), ... + an on-shell W boson in its decay
 - Excellent tool for the calibration of the experiment
 - jet-energy scale for light & heavy quarks, b-tagging efficiency, MET

Dilepton+X Selection

- Dilepton channels: ee, μμ, eμ
 - Triggers: μ+X (p_T > 9 GeV/c) or e/γ+X (E_T > 15 GeV)
 - 2 isolated, prompt, oppositely charged leptons (I = e,µ) of good quality
 - *p*_T(I) > 20 GeV/c
 - $|\eta_{\mu}| < 2.5$, $|\eta_{e}| < 2.4$
 - Relative isolation: Detected energy around lepton

$$\widehat{\sum} p_T^{\text{track}} + \sum_{R < 0.3} p_T^{\text{ECAL}} + \sum_{R < 0.3} p_T^{\text{HCAL}}$$
Rel.isol. =
$$\frac{R < 0.3}{p_T(\text{lepton })}$$
< 15 %

- Missing transverse energy (MET)
 - using calorimeter⊕tracking
 - MET > 30 (20) GeV (in *eµ+X*)

- Z-boson veto:
 - $76 < M_{ee,\mu\mu} < 106 \text{ GeV/c}^2$
- Count additional jets:
 - anti- k_T jets, R = 0.5
 - using calorimeter⊕tracking info
 - |η| < 2.4, p_T > 30 GeV/c
 - ≥ 2 jets typical for ttbar

Dilepton Channel in 78 nb⁻¹

Insufficient data for signal just yet \Rightarrow <u>background studies</u> in relaxed selection & test of data-driven methods for background estimation

Background Estimation in Dileptons

6

Bottom-Jet Identification

- Relaxed selection: Simulation describes the data very well!
- Jets from b-quarks are a telling feature of top-quark decays
 - Not (yet) applied in the selection, but we start to observe the heavy-quark content of the event sample
 - Example: Loose b-tagger using the impact parameter significance (IPsig) of the tracks associated with the jet (loose cut = ~10% fake rate/jet)

Simple and robust tagger: IPsig of track with 2nd-highest IPsig in the jet > loose threshold

Chosen here, as it allows to see any tagged jets in the selected sample already

To be tightened as luminosity increases to improve purity of b-tagged jets

Relaxed selection here: without Z-veto, no MET requirement

Lepton+Jets Selection (simplified)

- Channels: *e*+jets, μ+jets
 - Ask for exactly 1 prompt, isolated electron (muon) of good quality
 - Very similar selection of *e*, *µ* as before, but
 - tightened ID requirements and isolation:
 - Rel.isol. < 10%(*e*), 5%(μ)
 due to larger backgrounds
 - *p_T*(e) > 30 GeV/c
 - $p_T(\mu) > 20 \text{ GeV/c}, |\eta_{\mu}| < 2.1$
 - Do not apply (yet) any requirement of significant missing transverse energy (MET)

- Count additional jets
 - anti- k_T jets, R = 0.5
 - using calorimeter info
 - |η| < 2.4, p_T > 30 GeV/c
 - ≥ 4 jets is typical for ttbar

L+Jets Channel in 78 nb⁻¹

Background Estimation in L+Jets

PARIS 2010

L+Jets Channel in 78 nb⁻¹

Telling L+Jets Distributions

So do we see the Top-Quark?

Not in the 78 nb⁻¹ of data presented so far

(in agreement with the expectation/predictions)

µ+Jets Candidate Event (from July 14!)

comb.): 104, 105, 151 GeV/c²

e+Jets Candidate Event (from July 18)

μμ + Jets Candidate Event (from July 18)

μμ +Jets Candidate ... cont'd

Summary

- 78 ± 9 nb⁻¹ of pp collisions at 7 TeV fully analyzed
 - Fast turn-around time (data is only ≥2 weeks old)
 - No signal, as expected
 - Tools are ready for first measurements:
 - Simulation describes the data very well
 - Successfully tested background estimations
- Currently establishing first top-quark signals
 - Exciting top candidates in the most recent data in 3 channels in 0.25 pb⁻¹!

- Very, very exciting times are ahead!
 - we've been saying this for years, but it's nothing but the Truth (quark)

The signal is starting to rise from the background

18

Thanks!

To you for the attention, to the organizing committees of ICHEP, and to the LHC, the CMS collaboration and all the analysts for their dedicated work to make first top-quark physics in *pp* collisions possible!

Reference:

"Selection of Top-Like Events in the Dilepton & Lepton+Jets Channels in Early 7 TeV Data," CMS Physics Analysis Summary, CMS-PAS-TOP-10-004 (2010)

Backup Slides ...

Compact Muon Solenoid

21

PARIS 2010

Dilepton Channel: Fake Rate & Yields

Dilepton Channel

Dilepton Channel

T. Christiansen, CERN · Top-Quark Studies at CMS · ICHEP 2010 · Paris, 23-July-2010

24

Dilepton Channel

Sum (p_T) of the 2 lepton transverse momenta

Relaxed selection: no Z-veto, N_{jet} ≥ 0, no MET cut

e+Jets: Fits in H_{T,lep} & MET

e+Jets: Fits in H_{T,lep} & MET, Results

Fit templates in background region \rightarrow extract N(QCD)

2 complementary templates for QCD: electron candidates that nearly pass e-ID criteria and jets with large electro-magnetic fraction (*W* template from simulation)

Table 5: *e*+jets: Results of the QCD estimation using templates for events without any jet requirement.

Variable	Template	QCD in bkg. region	QCD in sig. region	Whole dataset
₿ _T (>25)	QCD model	$41{\pm}15$	19 ± 7	60±23
	prediction (sim.)	$50.5 {\pm} 0.5$	12.2 ± 0.2	$62.7 {\pm} 0.5$
н (>60	QCD model	$47{\pm}13$	39±11	$86{\pm}24$
TT,lep() 00	prediction (sim.)	$36.7 {\pm} 0.4$	26.0 ± 0.3	$62.7 {\pm} 0.5$

Table 6: *e*+jets: Results of the QCD estimation using templates for event with at least one jet.

Variable	Template	QCD in bkg. region	QCD in sig. region	n Whole dataset
₿ _T (>25)	QCD model	28±17	8 ± 5	37±21
	prediction (sim.)	$36.3 {\pm} 0.4$	$5.3 {\pm} 0.1$	$41.6{\pm}0.4$
Н (со)	QCD model	26±10	10±4	36±14
¹¹ T,lep (>60	prediction (sim.)	$29.2 {\pm} 0.4$	$12.4{\pm}0.2$	$41.6 {\pm} 0.4$

Simulation describes the data as well as the BG estimate very well!

e+Jets Kinematical Distributions

µ+Jets Kinematical Distributions

