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Introduction
°

Transversity of the nucleon using hard processes

What is transversity?

@ Transverse spin content of the proton:

| D@ ~ =) =)
spin along x helicity states

©

Observable sensible to helicity flip thus give access to transversity Arg(x).
Very poorly known

[

Transversity GPDs are completely unknown
x x T+ r—£

@ For massless (anti)particles, chirality = (-)helicity
@ Transversity is thus a chiral-odd quantity

Since QCD and QED are chiral even, the chiral odd quantities which one
want to measure should appear in pairs

(7
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Transversity of the nucleon using hard processes: using a two body final

state process?

How to get access to transversity?

9 the dominant DA of pr is of twist 2 and chiral odd ([y",~"] coupling)
@ unfortunately v* NT — pr N’ =0
o this is true at any order, because this would require a transfer of helicity of
2 from photon: impossible!

o lowest order diagrammatic argument:

" "

vanish: v*[v",7"]7a = 0

N N’ N N’
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Transversity of the nucleon using hard processes: using a two body final

state process?

Can one circumvent this vanishing?

@ this vanishing is true only a twist 2
@ at twist 3 this process does not vanish

@ however processes involving twist 3 DAs may face problems with
factorization (end-point singularities)

9 the problem of classification of twist 3 chiral-odd GPDs is still open:
Pire, Szymanowski, S.W. in progress, in the spirit of our Light-Cone
Collinear Factorization framework
(Anikin, Ivanov, Pire, Szymanowski, S. W.)

see talk of L. Szymanowski on Friday (11:50) for an application beyond leading twist of
this LCCF scheme at small-x (here for chiral-even DA and GPD):

Exclusive processes beyond leading twist: gamma*T -> rhoT impact factor with twist

three accuracy in Session 3 - Perturbative QCD, Jets and Diffractive Physics



Access to GPD through a 3 body final state
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Our process: YN — 7wt p.N’
i Pr
YN — 7t p% N’ gives access to transversity

9 Factorization a la Brodsky Lepage of v 4+ 7 — 7 + p at large s and fixed
angle (i.e. fixed ratio t'/s,u’/s)
= factorization of the amplitude for v + N — 7 + p+ N’ at large M,Qw

¥ t' ¢
i T o + . w* chiral-even twist 2 DA
s 2
. | Tu | | Mo
\o e pY chiral-odd twist 2 DA
z+€ w—¢
N - LGPDs

ey 2
. o t <Mz, chiral-odd twist 2 GPD
@ a typical non-vanishing diagram:

9 these processes with 3 body final state can give access to all GPDs:
J\/ffr,, plays the role of v* in usual DVCS, and can be scanned
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Master formula based on leading twist 2 factorization

(‘PD@ -
N / e N

i< M2

= — T v z (T"(z,v, 2 Yo, v, 2
A = \/_ _1d / d / d ) —T%x,v,2))
X (H%(l’,f,t)— T('vavt)) W(Z)CDP(’U)_F"'
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Non perturbative ingredients

GPDs and DAs

One needs to encode the matrix elements of two kinds of chiral-odd operator:
@ transversity GPDs (twist-2 level):

dz~ izPt 22— —- 1 . +i 1 _
1 ¢ <p2,>\2|¢q< 57 )w <22 )|P1,)\1>

1 _ C4i o E PTA* — ATP?
= sprulp2A2) {H%(m,f,t)za +H%(-7?757t)M7]2V
NTAT— At NTPI Pty

b BN 6 t) B (. 61) ] u(pr, M)

2MN MN

o for A = 0 each above factors vanishes except for £ which thus
dominates in the small ¢ domain

@ in the forward limit it is the only transversity GPD which survives:
H(x,0,0) = Apg(z) (quark transversity distribution)

@ transversity DAs (twist-2 level):

(0la(0)a" u(z)|p’ (p,s)) = %(Uﬁp” - cfZP“)fpl/O du e ¢ (u)



Access to GPD through a 3 body final state
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Kinematics

Kinematics to handle GPD in a 3-body final state process
@ use a Sudakov basis :
light-cone vectors p, n with 2p-n =s 5 ) t
CI T /‘ ) at
@ assume the following kinematics M NN
7 T ! M72rp
M [N
o Al small \\/ Lo N/ p
o M?%, m2, m2 <« M2, TH+E - z—€
// - - N
9 initial state particle momenta  GPDs
N(Pl)/ o ’ }\\ N'(p2)
g“=n" Py =01+&p" + (1+§) n* i<
@ final state particle momenta:
M2+ A2
T 1— poy t ot AM
P2 ( g)p 8(1 _ 5) €
5y — A /2)% +m?2 AR
pﬁ — OCTL“ + (pt t/ ) ﬂpu +p;i _ =4
as 2
SR 2 2
. Dt + A:/2)° +m
P = ozpn‘—&—( /2) 2 pt

ya
-p
ps
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n
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Access to GPD through a 3 body final state
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Kinematics

Pertinent physical parameters

9 Total center-of-mass energy squared
of the v-N system

Syn = (g+p1)?

~
Y, o+
@ Hard scale: invariant squared mass g N\
+ 0 L
of the (7™, p°) system | M2,
— ,/'/ 0
12 2 2 N s o
Mz,= (px +Pp)” = —u'= —(pp —q) N T
/ 2 2 x4+ & x—¢&
~—t=—(pr—q)° = —pl I
. GPDs
@ Transferred squared momentum: N(p1)— '\\\% e N (p2)
2 . -
t= — small ¢
(p2 —p1) ey

@ Skewedness: { = 57—

2
mp

SoN—M

with 7 = 5— (generalized Bjorken variable for Drell Yan)
Tp
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Computation of the hard part

Typical Feynman diagrams (62 in total)

diagram with photon wu-quark coupling diagram with photon d-quark coupling



Access to GPD through a 3 body final state
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Py =(z+&p

H%d(mvg’ tml")

N N’

representative diagram with a 3 gluon vertex
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A model based on Double Distribution

Realistic Parametrization of H.

@ GPDs can be represented in terms of Double Distribution (Radyushkin)
based on Schwinger representation of a toy model for GPDs which has the structure of a
triangle diagram in scalar ¢> theory

1—18]
Hi(2,6,t = 0) = /dﬁ/ da 6(8 + £a — ) f2(5, )

1+8]
@ ansatz for these Double Distribution (Radyushkin):

o f1(B,a) =T1(B,a) Arq(B)
@ Arpg(z) : chiral-odd PDF (Anselmino et al.)

_30-B)>%-a® . s ; q —
o II(B,a) = a-pp - profile function (f1(8,0) = Arq(B))

@ ansatz for the t-dependence:

Hi(e,6,t) = Hi(x,&,t = 0) x Fi(t)

with F(t) = —==7 a standard dipole form factor (C' = .71 GeV)

(t— C)



Unpolarized Cross Section
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Unpolarized differential cross section

Differential Cross Section and Physical Cuts

do _ |M|?
dt du' dM2, =t 3253NM,EP(2W)3
_u/
@ Validity of the factorization of the partonic [ (/“,’)m,a:r(t)ﬂr
amplitude : s _—
—t',—u' > A% > AéCD with A ~ 1 GeV 7
@ Suppress final states interactions (to justify Lof- | _— i
factorization): [ i - ( u )mm (t) i
2 e 2 2 _ 2 0sf 1 1
Mz, ]\]ﬂN, > Mg with My =2 GeV 5 !
¥ |
Y CUtS over _u/ and M2N/ ‘)(l))‘l - U\‘ ' ‘H‘I ' ‘Uﬂ‘ ' (i‘-)‘ ‘l)‘ o 0.6

= (=) pmin(t, SyN, ]\,1;2\_/)_

S N = 20 GeVZ, M2 =3 Gev?
o Cuts over —t’ and MgN, N mp

= (—’U/,)ma,a: (t; S’va ‘]‘/[721'/))



Predictions

Unpolarized Cross Section
000

Differential cross section for M;f,, =6 GeV?

Syn =20 GeV?
___do b.GeV—6
dt du’ dM2 (nb.Gev™7)
T =t in
30|
20|
15|
10|
2 3 4
—u’(GeV?)
e 10 nb.GeV~°
dtduddiz, | ,_, o UnbAae

min

dotted: t = tyin

windows: solid: t = —.5 GeV?

Son =200 GeV?

do —6
Tidu diZ FITER . (nb.GeV~™°)
—tmin
0.100
0.050
0.010
0.005
0.001
2 3 4
—u’(GeV?)
prmye x 0.01 nb.GeV~°
dtdu’dMZ,) |, _, : :

min




Unpolarized Cross Section
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Predictions

Z\ff;f,,—dependence of the differential cross section -4

dM?Z,
do - tmin i ~Urnan d S F2 do
aMz, ./,0,5 ! /, =) Fir(t) > iz, R
d;\l;rp (nb.GeV~—2) ﬁ (nb.Gev—?)
20.( 0059
2q
7 5 & 7 8 » 4 B B ! ;
M2 ,(Gev?) M2, (Gev?)
S,n =20 GeV? S,n = 200 GeV?

Total cross sections for photoproduction:

o(Syn =20 GeV?) ~33 nb  o(Syn =200 GeV?) ~ 0.1 nb



Unpolarized Cross Section
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Predictions

S n-dependence of the differential cross section o

o, (nb) With our cuts
[ ]
o —t',—u' >1 GeV?
. ®
10.0- ° ]‘472”\]/7 M,?N/ > 2 Gev2
5.0}
[ J
1.0
0.5} ¢
o - - - 2
50 100 150 780 S (GeV)



d Cross Section

Muoproduction at Compass (CERN)

Very sizable rates
@ denote I'%(Q?, v) the quasi real (transverse) photon flux (E, = 160
GeV).
@ Total cross section for the muoproduction uN — pr ™ p% N’

1 144
op = / dQQ/ dv TE(Q%,v) O Nt pO N (Q? v) ~0.25 pb
0.02 6

1

-2 -1

@ Experimental rate: For a muon beam luminosity of 2.5 10°2 cm 257",

R~ 610 % Hz



Unpolarized Cross Section
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Rate estimates at JLab

Very high rates

@ CLASI12 Hall B:

with a photon (7 - 10.5 GeV) flux N, ~ 5 107 photons/s

Experimental rate: R ~ 0.1 Hz

@ Hall D (12 GeV)

o photon (8 - 9 GeV) flux N, ~ 10® photons/s
o number of protons per surface unit Np ~ 1.27 b1 (target : liquid
hydrogen (30 cm))

Experimental rate: R =0 x Ny x Np ~ 5 Hz



Conclusion

Conclusion

@ Photoproduction of a 7p% pair with a large hard scale M7, sensitive to
the transversity GPDs even for unpolarized target and at twist-2 level

@ Parametrization of the dominant chiral-odd GPD H. based on double
distribution

@ Promising way to get informations on the generalized chiral-odd quark
content of the nucleon:
large enough rates to extract transversity GPDs, at COMPASS and
JLab@12 GeV

@ Possibility to access to :

@ Spin density matrix of p%

@ Chiral-even GPDs H and H with p9 7t and 797+
o Polarized beam and target asymmetries

El Beiyad, Pire, Szymanowski, S.WW. to appear soon

@ Such processes with 3 body final state are also promising for non
transversity GPD measurement, on top of the now standard DVCS based
studies
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Tensorial structure of the amplitude

AH% = (N>J\_1A2 “€px)(PL€yL)A+ (Ni_l)% “ey1)(pL-€px) B
+ (N>J\_1A2 pL)(eyLc€px) C
(Nayag L)L -€y1)(pL-€px)D
with
9 A, B, C, D scalar functions of S,n, —u’ and M2,

9 eﬁl the transverse polarization of the on-shell photon
L 2i _
o N, = 29 alp2, A )by ulpr, M)

Rich spin structure of AH% : access to the spin density matrix of p3.,
polarization asymmetries, ...
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of our model for transversity GPD

x and ¢-dependence of HY(z,&,t = 0)
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Plots of our model for transversity GPD

xz-dependence of Hl(z,&,t = 0) for fixed values of £
Hy(x£t=0) HE(x£,t=0)

Same order of magnitude but significant differences with other parametrizations
(Pincetti et al.) and lattice calculations (Géckeler et al.)
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Transverse polarization of p%

o _ Dp €+ Pp - €+ .
i(pp) < Mp 76i+mp(Ep+mp)pp
_ D€t -
= 2a——— (p* i 0
a Bt )+ 0,)
= o ) = =
_ Dt €+ Dt Dt - €+
= 2a—0—— |1- 2 |pt+2"F"—— 0
O‘&25+ﬁ${ &Qs}p * a? —|—_Q Pr+(0,&)
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Transversity PDFs

Aru(z) 7.5%0.5% (1 —)°(z * u(z) + = * Au(z))

Ari(z) = T7.5%0.5% (1 —x)°(x*a(z) + z* Au(z))

Ard(z) = 75%(—=0.6) (1 —xz)°(x*d(z) +z * Ad_(x))

. Ard(z) = 75%(—=0.6) (1 —xz)°(x xd(z) + = * Ad(z)) )

Au(@) = V& u(x)
Aa(z) = —0.32"" a(z)
Ad(z) = —0.7 vz d(z)
Ad(z) = —0.3z°" d(z)

A\
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