$C P$ Violation in Charm Decays at Belle July 2010 ICHEP Byeong Rok Ko (Korea University) for the Belle Collaboration

- Introduction
- Method
- $A_{C P}$ in $D_{(s)}^{+} \rightarrow K_{s}^{0} \pi^{+}$and $D_{(s)}^{+} \rightarrow K_{s}^{0} K^{+}$
- $A_{C P}$ in $D^{0} \rightarrow K_{s}^{0} \pi^{0}, D^{0} \rightarrow K_{s}^{0} \eta$, and $D^{0} \rightarrow K_{s}^{0} \eta^{\prime}$
$-\Delta A_{C P}$ between $D^{+} \rightarrow \phi \pi^{+}$and $D_{s}^{+} \rightarrow \phi \pi^{+}$
-Summary

Introduction

- CP Violation (CPV)
- Direct $C P V$: $C P V$ in decay rate
-SM : $O(0.1 \%)$ of $C P V$ in Singly Cabibbo Suppresed (SCS) decays, but No direct CPV in Cabibbo Favored (CF) and Doubly Cabibbo Suppressed (DCS) decays

Singly Cabibbo Suppressed (SCS) diagram (tree)

SCS diagram (penguin)

Cabibbo Favored (CF) diagram

Doubly Cabibbo Suppressed (DCS) diagram.

- $A_{C P}$ in $D_{(s)}^{+} \rightarrow K_{s}^{0} h^{+}, h^{+} \in\left\{\pi^{+}, K^{+}\right\} \rightarrow(0.332 \pm 0.006) \% C P V$ due to ε in K^{0} mixing - $\Delta A_{C P}$ between $D^{+} \rightarrow \phi \pi^{+}$(SCS) and $D_{s}^{+} \rightarrow \phi \pi^{+}$(CF) $\circ A_{C P}$ and $\Delta A_{C P}$ deviations from expectations at $O(0.1 \%)$ would require more precise theory prediction to distinguish BSM from SM

Introduction-cont.

\bullet - Indirect $C P V$: $C P V$ induced by D^{0} mixing

- $D^{0} \rightarrow K_{s}^{0} P^{0}, P^{0} \in\left\{\pi^{0}, \eta, \eta^{\prime}\right\}$
$\rightarrow C P V$ in interference between decays with and without D^{0} mixing (type III by PDG convention)
$\rightarrow 0.332 \% C P V$ due to K^{0} mixing
\circ Technical problems in measuring production and decay vertices
: Would be difficult to perform a time dependent analysis
\rightarrow Can't extract CPV parameters
- Measure time integrated $A_{C P}$
$\circ A_{C P} \neq 0.332 \%$ would indicate the existence of BSM

Method

- $A_{C P}^{D \rightarrow X^{0} h^{+}}=\frac{\Gamma\left(D \rightarrow X^{0} h^{+}\right)-\Gamma\left(\bar{D} \rightarrow X^{0} h^{-}\right)}{\Gamma\left(D \rightarrow X^{0} h^{+}\right)+\Gamma\left(\bar{D} \rightarrow X^{0} h^{-}\right)}, \quad \Gamma:$ partial decay width
- $A_{\text {rec }}^{D \rightarrow X^{0} h^{+}}=A_{C P}^{D \rightarrow X^{0} h^{+}}+A_{\text {other }}, A_{\text {other }} \in\left\{A_{F B}^{D}, A_{\varepsilon}^{h^{+}}\right\}$
- $A_{\text {other }}$ should be corrected to measure $A_{C P}^{D \rightarrow X^{0} h^{+}}$
- $A_{F B}^{D}\left(\cos \theta_{D}^{C M S}\right)$: Production asymmetry \rightarrow Independent of decay
- $A_{\varepsilon}^{h^{+}}\left(p_{h^{+}}^{l a b}, \cos \theta_{h^{+}}^{l a b}\right)$: Asymmetry in h^{+}detection \rightarrow Depends on decay
-To correct $A_{\text {other }}$, we assume :
the same $A_{F B}$ for all charmed mesons and no CPV in CF decay
- $A_{\text {other }} \leftarrow$ Determined using the data

Method-cont. 1

$\begin{array}{llll}-A_{r e c}^{D \rightarrow K_{s}^{0} \pi^{+}}=A_{C P}^{D \rightarrow K_{s}^{0} \pi^{+}}+A_{F B}^{D}+A_{\varepsilon}^{\pi^{+}} & \Rightarrow \text { Eq.(1) } & \bullet A_{r e c}^{D_{s}^{+} \rightarrow \phi \pi^{+}} & =A_{F B}^{D_{s}^{+}}+A_{\varepsilon}^{\pi^{+}} \\ -A_{r e c}^{D \rightarrow K_{s}^{0} K^{+}}=A_{C P}^{D \rightarrow K_{s}^{0} K^{+}}+A_{F B}^{D}+A_{\varepsilon}^{K^{+}} & \Rightarrow \text { Eq.(2) } & \bullet A_{r e c}^{u n t a g e d ~} D^{0} \rightarrow K^{-} \pi^{+} & =A_{F B}^{D^{0}}+A_{\varepsilon}^{K^{-}}+A_{\varepsilon}^{\pi^{+}}\end{array} \quad \Rightarrow$ Eq.(4)
-For $K_{S}^{0} \pi^{+}$: Eq.(1)-Eq.(4) $=A_{C P}^{D \rightarrow K_{S}^{0} \pi^{+}}$
-For $K_{s}^{0} K^{+}$: Eq.(5) - Eq.(4) $=A_{\varepsilon}^{K^{-}}$
-Eq.(2) $-A_{\varepsilon}^{K^{+}}=A_{C P}^{D \rightarrow K_{s}^{0} K^{+}}+A_{F B}^{D} \equiv A_{\text {rec }}^{D \rightarrow K_{s}^{0} K_{\text {corr }}^{+}}$

- Using the antisymmetry of $A_{F B}\left(\cos \theta_{D}^{C M S}\right)$

$$
A_{C P}^{D \rightarrow K_{S}^{0} K^{+}}=\frac{A_{r e c}^{D \rightarrow K_{S}^{0} K_{\text {corr }}^{+}}\left(\cos \theta_{D}^{C M S}\right)+A_{r e c}^{D \rightarrow K_{S}^{0} K_{\text {corr }}^{+}}\left(-\cos \theta_{D}^{C M S}\right)}{2}
$$

$$
A_{F B}^{D}=\frac{A_{r e c}^{D \rightarrow K_{S}^{0} K_{\text {corr }}^{+}}\left(\cos \theta_{D}^{C M S}\right)-A_{\text {rec }}^{D \rightarrow K_{S}^{0} K_{\text {corr }}^{+}}\left(-\cos \theta_{D}^{C M S}\right)}{2}
$$

\bullet For $K_{S}^{0} P^{0}$: Eq.(6) - Eq.(5) $=A_{\varepsilon}^{\tau_{s}^{+}}$, then the same as the $K_{S}^{0} K^{+}$

Method-cont. 2

- $\Delta A_{C P}$ between $D^{+} \rightarrow \phi \pi^{+}$and $D_{s}^{+} \rightarrow \phi \pi^{+}$
- $A_{\text {rec }}^{D \rightarrow \phi \pi^{+}}=A_{C P}^{D \rightarrow \phi \pi^{+}}+A_{F B}^{D}+A_{\varepsilon}^{\pi^{+}}+A_{\varepsilon}^{K^{+} K^{-}}$
- $A_{\varepsilon}^{K^{+} K^{-}}=0$ for ϕ, but K^{*} contribution exists under ϕ

This effect was negligible in measurment of $A_{C P}$ in $K_{S}^{0} h^{+}$
$-\Delta A_{\text {rec }}=A_{\text {rec }}^{D^{+} \rightarrow \phi \pi^{+}}-A_{\text {rec }}^{D_{s}^{+} \rightarrow \phi \pi^{+}}=\Delta A_{C P}+\Delta A_{F B}$
-Then, the same as the $K_{S}^{0} K^{+}$

- $A_{\text {other }}$ corrections are done w.r.t.
the corresponding phase spaces for all channels
$A_{C P}$ in $D_{(s)}^{+} \rightarrow K_{S}^{0} h^{+}:$PRL 104, 181602 (2010) (with $673 \mathrm{fb}^{-1}$)
\bullet Measured $A_{C P}^{D^{+} \rightarrow K_{s}^{0} \pi^{+}}$in bins of $\left(p_{\pi}^{l a b}, \cos \theta_{\pi}^{l a b}, \cos \theta_{D}^{C M S}\right)$

- $A_{C P}^{D^{+} \rightarrow K_{S}^{0} \pi^{+}}=$
$(-0.71 \pm 0.19 \pm 0.20) \%$

$\rightarrow 2.6 \sigma$ away from 0 ,
consistent with -0.33%

- Measured $A_{C P}^{D_{s P}^{+} \rightarrow K_{S}^{0} K^{+}}$and $A_{F B}^{D}$ in $\cos \theta_{D}^{C M S}$ bins

$A_{C P}$ in $D^{0} \rightarrow K_{S}^{0} P^{0}$
- Measured $A_{C P}^{D^{0} \rightarrow K_{S}^{0} \pi^{0}}$ and $A_{F B}^{D}$ in $\cos \theta_{D}^{C M S}$ bins

Preliminary result

 with $791 \mathrm{fb}^{-1}$- $A_{C P}^{D^{0} \rightarrow K_{s}^{0} \pi^{0}}=$
$(-0.28 \pm 0.19 \pm 0.10) \%$
-Line :
LO prediction for $A_{F B}^{c \bar{c}}$
\bullet Measured $A_{C P}^{D^{0} \rightarrow K_{S}^{0} \eta}$ and $A_{F B}^{D}$ in $\cos \theta_{D}^{C M S}$ bins

Preliminary result with $791 \mathrm{fb}^{-1}$
-Use $\eta \rightarrow \gamma \gamma$

- $A_{C P}^{D^{0} \rightarrow K_{s}^{0} \eta}=$
$(+0.54 \pm 0.51 \pm 0.13) \%$
\rightarrow World's first measurement
-Line :
LO prediction for $A_{F B}^{c \bar{c}}$
\bullet Measured $A_{C P}^{D^{0} \rightarrow K_{S}^{0} \eta^{\prime}}$ and $A_{F B}^{D}$ in $\cos \theta_{D}^{C M S}$ bins

$\Delta A_{C P}$ between $D^{+} \rightarrow \phi \pi^{+}$and $D_{s}^{+} \rightarrow \phi \pi^{+}$

 $\bullet \phi \rightarrow K^{+} K^{-}$and $m\left(K^{+} K^{-}\right)$within $m_{P D G}^{\phi} \pm 16 \mathrm{MeV} / c^{2}$- $A_{\varepsilon}^{K^{+} K^{-}}$would be negligible, but different sign of $A_{\varepsilon}^{K^{+} K^{-}}$ in D^{+}and D_{s}^{+}decays might

 produce a non-negligible

$\Delta A_{\varepsilon}^{K^{+} K^{-}}$

Preliminary result

 with $850 \mathrm{fb}^{-1}$

$-{ }_{\varepsilon}^{K^{K} K^{-}}=(+0.067 \pm 0.015) \%$ for $D^{+},(-0.053 \pm 0.014) \%$ for D_{s}^{+}

- $\Delta A_{\varepsilon}^{K^{\dagger} K^{-}}=(+0.120 \pm 0.028) \%$
\rightarrow Non-neglgible and dominant systematics
- Measured $\Delta A_{C P}$ and $\Delta A_{F B}$ in $\cos \theta_{D}^{C M S}$ bins

Preliminary result

 with $850 \mathrm{fb}^{-1}$- $\Delta A_{C P}=(+0.62 \pm 0.30 \pm 0.15) \%$

- $\chi^{2} /$ dof w.r.t. $\Delta A_{F B}=0$ is $3.68 / 5$ \rightarrow No significant difference in production asymmetry of D^{+}and D_{s}^{+}

Summary

- A wide program of $C P V$ searches in charm decays from Belle are shown
-So far no evidence for $C P V$ at sensitivities
$\geq 0.2 \%$ depending on decay mode
-Report the most sensitive measurements to date
- First $A_{C P}$ measurements
in $D^{0} \rightarrow K_{s}^{0} \eta$ and $D^{0} \rightarrow K_{s}^{0} \eta$,

$A_{\varepsilon}^{K^{+} K^{-}}=\int\left(P_{1}(x)-P_{2}(x)\right) A_{\varepsilon}^{K}(x) d x$
$P_{1}(x)\left(P_{2}(x)\right)$: detected same (opposite) sign single kaon phase space distribution

$$
\varepsilon\left(x_{1}\right) \int d x_{2} P\left(x_{1}, x_{2}\right) \varepsilon\left(x_{2}\right)
$$

$P_{1}\left(x_{1}\right)=\frac{\varepsilon\left(x_{1}\right) d d x_{2} P\left(x_{1}, x_{2}\right) \varepsilon\left(x_{2}\right)}{\iint d x_{1} d x_{2} P\left(x_{1}, x_{2}\right) \varepsilon\left(x_{1}\right) \varepsilon\left(x_{2}\right)}$
$P_{2}\left(x_{2}\right)=\frac{\varepsilon\left(x_{2}\right) \int d x_{1} P\left(x_{1}, x_{2}\right) \varepsilon\left(x_{1}\right)}{\iint d x_{1} d x_{2} P\left(x_{1}, x_{2}\right) \varepsilon\left(x_{1}\right) \varepsilon\left(x_{2}\right)}$
$P\left(x_{1}, x_{2}\right)$: Normalized phase space distribution of $K^{+} K^{-}$ $x_{1} \equiv\left(p_{1}, \cos \theta_{1}\right):$ phase space of the same-sign kaon $x_{2} \equiv\left(p_{2}, \cos \theta_{2}\right):$ phase space of the opposite-sign kaon

