CP Violation in Charm Decays at Belle

July 2010 ICHEP Byeong Rok Ko (Korea University) for the Belle Collaboration

- Introduction
- •Method
- • A_{CP} in $D_{(s)}^+ \to K_S^0 \pi^+$ and $D_{(s)}^+ \to K_S^0 K^+$ • A_{CP} in $D^0 \to K_S^0 \pi^0$, $D^0 \to K_S^0 \eta$, and $D^0 \to K_S^0 \eta^*$
- • ΔA_{CP} between $D^+ \to \phi \pi^+$ and $D_s^+ \to \phi \pi^+$
- •Summary

• CP Violation (CPV)

• Direct *CPV* : *CPV* in decay rate

•SM : *O*(0.1%) of *CPV* in Singly Cabibbo Suppresed (SCS) decays, but No direct *CPV* in Cabibbo Favored (CF) and Doubly Cabibbo Suppressed (DCS) decays

• A_{CP} in $D_{(s)}^+ \to K_S^0 h^+$, $h^+ \in \{\pi^+, K^+\} \to (0.332 \pm 0.006)\%$ CPV due to ε in K^0 mixing • ΔA_{CP} between $D^+ \to \phi \pi^+$ (SCS) and $D_s^+ \to \phi \pi^+$ (CF) • A_{CP} and ΔA_{CP} deviations from expectations at O(0.1%) would require more precise theory prediction to distinguish BSM from SM

Introduction-cont.

•Indirect *CPV* : *CPV* induced by D^0 mixing • $D^0 \rightarrow K^0_S P^0$, $P^0 \in \{\pi^0, \eta, \eta^{\prime}\}$

- $\rightarrow CPV$ in interference between decays with and without D^0 mixing (type III by PDG convention)
- $\rightarrow 0.332\%$ CPV due to K^0 mixing

•Technical problems in measuring production and decay vertices

- : Would be difficult to perform a time dependent analysis
- \rightarrow Can't extract *CPV* parameters

•Measure time integrated A_{CP}

 $\circ A_{CP} \neq 0.332\%$ would indicate the existence of BSM

Method

• $A_{CP}^{D \to X^0 h^+} = \frac{\Gamma(D \to X^0 h^+) - \Gamma(\overline{D} \to X^0 h^-)}{\Gamma(D \to X^0 h^+) + \Gamma(\overline{D} \to X^0 h^-)}, \quad \Gamma: \text{ partial decay width}$ $\bullet A_{rec}^{D \to X^0 h^+} = A_{CP}^{D \to X^0 h^+} + A_{other}, \quad A_{other} \in \{A_{FB}^D, A_{\varepsilon}^{h^+}\}$ • A_{other} should be corrected to measure $A_{CP}^{D \to X^0 h^+}$ • $A_{EP}^{D}(\cos\theta_{D}^{CMS})$: Production asymmetry \rightarrow Independent of decay • $A_{\varepsilon}^{h^+}(p_{\mu^+}^{lab},\cos\theta_{\mu^+}^{lab})$: Asymmetry in h^+ detection

 \rightarrow Depends on decay

•To correct A_{other} , we assume :

the same A_{FB} for all charmed mesons and no *CPV* in CF decay

• A_{other} \leftarrow Determined using the data

Method-cont.1

$$\begin{aligned} \cdot A_{rec}^{D \to K_{S}^{0}\pi^{*}} &= A_{CP}^{D \to K_{S}^{0}\pi^{*}} + A_{FB}^{D} + A_{\varepsilon}^{\pi^{*}} \implies \text{Eq.}(1) \quad \cdot A_{rec}^{D_{\varepsilon}^{*} \to \phi\pi^{*}} &= A_{FB}^{D_{\varepsilon}^{*}} + A_{\varepsilon}^{\pi^{*}} \implies \text{Eq.}(4) \\ \cdot A_{rec}^{D \to K_{S}^{0}K^{*}} &= A_{CP}^{D \to K_{S}^{0}K^{*}} + A_{FB}^{D} + A_{\varepsilon}^{K^{*}} \implies \text{Eq.}(2) \quad \cdot A_{rec}^{untagged D^{0} \to K^{*}\pi^{*}} &= A_{FB}^{D^{0}} + A_{\varepsilon}^{K^{*}} + A_{\varepsilon}^{\pi^{*}} \implies \text{Eq.}(5) \\ \cdot A_{rec}^{D^{*} \to D^{0}\pi_{\varepsilon}^{*}} &= A_{CP}^{D^{0} \to K_{S}^{0}P^{0}} + A_{FB}^{D^{*}} + A_{\varepsilon}^{\pi^{*}} \implies \text{Eq.}(3) \quad \cdot A_{rec}^{uagged D^{0} \to K^{*}\pi^{*}} &= A_{FB}^{D^{*}} + A_{\varepsilon}^{K^{*}} + A_{\varepsilon}^{\pi^{*}} \implies \text{Eq.}(6) \\ \bullet \text{For } K_{S}^{0}\pi^{+} : \text{Eq.}(1) - \text{Eq.}(4) &= A_{CP}^{D \to K_{S}^{0}\pi^{+}} \\ \bullet \text{For } K_{S}^{0}K^{+} : \text{Eq.}(5) - \text{Eq.}(4) &= A_{\varepsilon}^{K^{-}} \\ \bullet \text{Eq.}(2) - A_{\varepsilon}^{K^{*}} &= A_{CP}^{D \to K_{S}^{0}K^{+}} + A_{FB}^{D} \equiv A_{rec}^{D \to K_{S}^{0}K^{+}} \\ \bullet \text{Using the antisymmetry of } A_{FB}(\cos \theta_{D}^{CMS}) \\ A_{CP}^{D \to K_{S}^{0}K^{+}} &= \frac{A_{rec}^{D \to K_{S}^{0}K^{+}}(\cos \theta_{D}^{CMS}) + A_{rec}^{D \to K_{S}^{0}K^{+}}(-\cos \theta_{D}^{CMS})}{2} \end{aligned}$$

$$A_{FB}^{D} = \frac{A_{rec}^{D \to K_{S}^{0} K_{corr}^{+}} \left(\cos \theta_{D}^{CMS}\right) - A_{rec}^{D \to K_{S}^{0} K_{corr}^{+}} \left(-\cos \theta_{D}^{CMS}\right)}{2}$$

•For $K_s^0 P^0$: Eq.(6) – Eq.(5) = $A_{\varepsilon}^{\pi_s^+}$, then the same as the $K_s^0 K^+$

Method-cont.2

• ΔA_{CP} between $D^+ \rightarrow \phi \pi^+$ and $D_s^+ \rightarrow \phi \pi^+$ • $A_{rec}^{D \rightarrow \phi \pi^+} = A_{CP}^{D \rightarrow \phi \pi^+} + A_{FB}^D + A_{\varepsilon}^{\pi^+} + A_{\varepsilon}^{K^+K^-}$ • $A_{\varepsilon}^{K^+K^-} = 0$ for ϕ , but K^* contribution exists under ϕ This effect was negligible in measurment of A_{CP} in $K_s^0 h^+$ • $\Delta A_{rec} = A_{rec}^{D^+ \rightarrow \phi \pi^+} - A_{rec}^{D_s^+ \rightarrow \phi \pi^+} = \Delta A_{CP} + \Delta A_{FB}$ •Then, the same as the $K_s^0 K^+$

• *A*_{other} corrections are done w.r.t. the corresponding phase spaces for all channels A_{CP} in $D_{(s)}^+ \to K_S^0 h^+$: PRL 104, 181602 (2010) (with 673 fb⁻¹)⁻⁷ •Measured $A_{CP}^{D^+ \to K_S^0 \pi^+}$ in bins of $(p_{\pi}^{lab}, \cos \theta_{\pi}^{lab}, \cos \theta_D^{CMS})$ 0.2 [p^{lab}∈[0.5,1.0] GeV/c Š [p_π^{lab}∈[0.5, 1.0] GeV/c p^{lab}∈[0.5,1.0] GeV/c $\overset{\uparrow}{\overset{\Box}} 0.1 \overset{\circ}{\underset{\Box}} \overset{\circ}{\overset{\circ}} 0.1 \overset{\circ}{\underset{\Box}} \overset{\circ}{\overset{\circ}} 0.15 \overset{\circ}{\overset{\circ}} 0.15 \overset{\circ}{\overset{\circ}} 0.15 \overset{\circ}{\underset{\bullet}} \overset{\circ}{\overset{\circ}} 0.15 \overset{\circ}{\overset{\circ} 0.15 \overset{\circ}{\overset{\circ}} 0.15 \overset{\circ}{\overset{\circ} 0.15 \overset{\circ}{\overset{\circ}} 0.$ ∩cose^{lab}∈[0.15,0.65] $\cap \cos\theta_{\pi}^{\text{lab}} > 0.65$ $\bullet A_{CP}^{D^+ \to K_S^0 \pi^+} =$ -0.1-0.2 $(-0.71 \pm 0.19 \pm 0.20)\%$ $\overset{\mathsf{h}}{\overset{\mathsf{o}}}_{\mathbf{Y}} \overset{0.2}{\overset{\mathsf{p}}{\overset{\mathsf{m}}}_{\pi}} \overset{\mathsf{p}_{\pi}^{\mathsf{m}}}{\overset{\mathsf{e}_{\mathsf{L}}}{\overset{\mathsf{o}}}_{\pi}} \overset{\mathsf{o}}{\overset{\mathsf{o}}} \overset{\mathsf{o}}}{\overset{\mathsf{o}}} \overset{\mathsf{o}}{\overset{\mathsf{o}}} \overset{\mathsf{o}}} \overset{\mathsf{o}}{\overset{\mathsf{o}}} \overset{\mathsf{o}}{\overset{\mathsf{o}}} \overset{\mathsf{o}}} \overset{\mathsf{o}}{\overset{\mathsf{o}}} \overset{\mathsf{o}}}{\overset{\mathsf{o}}} \overset{\mathsf{o}}} \overset{\mathsf{o}}{\overset{\mathsf{o}}} \overset{\mathsf{o}}} \overset{\mathsf{o}}}{\overset{\mathsf{o}}} \overset{\mathsf{o}}}{\overset{\mathsf{o}}} \overset{\mathsf{o}}}{\overset{\mathsf{o}}} \overset{\mathsf{o}}}{\overset{\mathsf{o}}} \overset{\mathsf{o}}}{\overset{\mathsf{o}}} \overset{\mathsf{o}}}{\overset{\mathsf{o}}} \overset{\mathsf{o}}} \overset{\mathsf{o}}}{\overset{\mathsf{o}}} \overset{\mathsf{o}}} \overset{\mathsf{o}}}{\overset{\mathsf{o}}} \overset{\mathsf{o}}}{\overset{\mathsf{o}}} \overset{\mathsf{o}}}{\overset{\mathsf{o}}} \overset{\mathsf{o}}}{\overset{\mathsf{o}}} \overset{\mathsf{o}}}{\overset{\mathsf{o}}} \overset{\mathsf{o}}}{\overset{\mathsf{o}}} \overset{\mathsf{o}}}{\overset{\mathsf{o}}} \overset{\mathsf{o}}}{\overset{\mathsf{o}}} \overset{\mathsf{o}}}{\overset{\mathsf{o}}} \overset{\mathsf{o}}}{\overset{\mathsf{o}}}} \overset{\mathsf{o}}}{\overset{\mathsf{o}}} \overset{\mathsf{o}}}{\overset{\mathsf{o}}}} \overset{\mathsf{o}}}{\overset{\mathsf{o}}} \overset$ 0.2 [p_π^{lab}∈[1.0,2.0] GeV/c p^{lab}∈[1.0,2.0] GeV/c p^{lab}∈[1.0,2.0] GeV/c -∩ cosθ^{lab}>0.65 $\rightarrow 2.6 \sigma$ away from 0, -0.1 consistent with -0.33%-0.20.2 p_π^{lab}>2.0 GeV/c $A_{CP}^{D^{+} \rightarrow K_{S}^{0}\pi^{+}}$ p_ab>2.0 GeV/c p^{lab}>2.0 GeV/c expected due to $K_{\rm s}^0$ 0.1 [-∩ cosθ^{lab}_π<0.15 ∩ cosθ_x^{lab}∈[0.15,0.65] $\cap \cos\theta_{\tau}^{lab} > 0.65$ 0 -0.1 0.5 -1 - 0.5-1 - 0.50.5 0.5 0 0 cosθ^{CMS}_{D⁺} cosθ^{CMS} cos0^{CMS}

• $A_{\varepsilon}^{K^+K^-} = (+0.067 \pm 0.015)\%$ for D^+ , $(-0.053 \pm 0.014)\%$ for D_s^+

• $\Delta A_{\epsilon}^{K^+K^-} = (+0.120 \pm 0.028)\%$

 \rightarrow Non-neglgible and dominant systematics

•Measured ΔA_{CP} and ΔA_{FB} in $\cos \theta_D^{CMS}$ bins

Summary

- •A wide program of *CPV* searches in charm decays from Belle are shown
- •So far no evidence for *CPV* at sensitivities
 - $\geq 0.2\%$ depending on decay mode
- •Report the most sensitive measurements to date
- First A_{CP} measurements
- in $D^0 \to K^0_S \eta$ and $D^0 \to K^0_S \eta^{\prime}$

PRL 104,181602		Summary-cont.	
	(2010)		
Decay Mode	A_{CP} (%) (Belle)	A_{CP} (%)(other)	A_{CP} (%) (SM from K_S^0)
$D^+ \to K^0_S \pi^+$	$-0.71 \pm 0.19 \pm 0.20$	$-1.3\pm0.7\pm0.3$	-0.332
$D^+ \rightarrow K^0_S K^+$	$-0.16 \pm 0.58 \pm 0.25$	$-0.2 \pm 1.5 \pm 0.9$	-0.332
$D_s^+ \to K_S^0 \pi^+$	$+5.45 \pm 2.50 \pm 0.33$	$+16.3 \pm 7.3 \pm 0.3$	+0.332
$D_s^+ \to K_S^0 K^+$	$+0.12 \pm 0.36 \pm 0.22$	$+4.7 \pm 1.8 \pm 0.9$	-0.332
$D^0 \to K^0_S \pi^0$	$-0.28 \pm 0.19 \pm 0.10$	$+0.1 \pm 1.3$	-0.332
$D^0 \to K^0_S \eta$	$+0.54 \pm 0.51 \pm 0.13$	N.A.	-0.332
$D^0 \to K^0_S \eta'$	$+0.90 \pm 0.67 \pm 0.15$	N.A.	-0.332
$\overline{\bullet A_{CP}^{D^+ \to \phi \pi^+} - A_{CP}^{D_s^+ \to \phi \pi^+}} = (+0.62 \pm 0.30 \pm 0.15)\% \{ \text{PDG: } A_{CP}^{D^+ \to \phi \pi^+} = (-0.1 \pm 1.5)\% \}$			
	Preliminary		
		results	

$$A_{\varepsilon}^{K^{+}K^{-}} = \int (P_1(x) - P_2(x)) A_{\varepsilon}^{K}(x) dx$$

 $P_1(x)$ ($P_2(x)$): detected same (opposite) sign single kaon phase space distribution

$$P_1(x_1) = \frac{\varepsilon(x_1) \int dx_2 P(x_1, x_2) \varepsilon(x_2)}{\iint dx_1 dx_2 P(x_1, x_2) \varepsilon(x_1) \varepsilon(x_2)}$$
$$P_2(x_2) = \frac{\varepsilon(x_2) \int dx_1 P(x_1, x_2) \varepsilon(x_1)}{\iint dx_1 dx_2 P(x_1, x_2) \varepsilon(x_1) \varepsilon(x_2)}$$

 $P(x_1, x_2)$: Normalized phase space distribution of $K^+K^$ $x_1 \equiv (p_1, \cos \theta_1)$: phase space of the same-sign kaon $x_2 \equiv (p_2, \cos \theta_2)$: phase space of the opposite-sign kaon