

Search for lepton flavour violating tau decay and lepton-number violation B decay at Belle

K.Hayasaka(Nagoya Univ.) (on behalf of the Belle Collaboration)

Introduction

Lepton flavor violation (LFV) in charged leptons ⇒ negligibly small probability in the Standard Model (SM) even taking into account neutrino oscillations

$$Br(\tau \to \ell \gamma)_{SM} \propto \left(\frac{\delta m_{\nu}^2}{m_W^2}\right)^2 < 10^{-54} \qquad \underbrace{\frac{W}{\tau}}_{\nu_{\tau}} \underbrace{\frac{W}{\nu_{\mu}}}_{\nu_{\mu}} \text{ (or e)}$$
(EPJC8 513(1999))

Observation of LFV is a clear signature of New Physics (NP) •Many extensions of the SM predict LFV decays. →These branching fractions could be enhanced as high as current experimental sensitivity.

Tau lepton :

- The heaviest charged lepton
- Many possible LFV decay modes
- ⇒Ideal place to search for LFV

KEKB/Belle

Integrated Luminosity (pb

σ(ττ)~0.9nb, **σ(bb)~1.1nb** A B-factory is also a τ-factory! **World-largest data sample!**

Good track reconstruction and particle identification Lepton ID ~ (80-90)% Fake ID ~ (0.1-3)%

~9x10⁸ $\tau\tau$ at Belle

Search for $\tau \rightarrow \ell P^0(=\pi^0,\eta,\eta')$

previous result Data: 401 fb⁻¹ @ Belle, 339 fb⁻¹@BaBar (PLB648,341(2007)) (PRL98,061803(2007)) To obtain high detection efficiency, $\eta(\eta')$ is reconstructed from $\gamma\gamma(\rho^0\gamma)$ as well as $\pi\pi\pi^0(\pi\pi\eta)$.

 $\mathcal{B} < (0.8-2.4) \times 10^{-7}$ at 90%CL

•New search with 901fb⁻¹ data sample

- To obtain better resolution, $\eta(\eta')$ -momentum is evaluated by $\eta(\eta')$ -mass-constrained fit.
- Differently from the previous analysis, selection criteria are set mode by mode. previous new ex.) commonly required P_{ℓ} ^{CM}<4.5GeV/c \rightarrow P_{u} ^{CM}/ \sqrt{s} <0.38 for $\tau \rightarrow \mu \eta$ $\overset{\mu}{P}_{s}$ CM/ \sqrt{s} <0.38 for $\tau \rightarrow e\eta$ • For $\tau \rightarrow \mu \eta$, Neural network (NN) selection is also introduced. 0. $15 < P_{\mu}^{CM} / \sqrt{s} < 0.38$ for $\tau \rightarrow \mu \pi^0$ $P_{e}^{CM} / \sqrt{s} < 0.38$ for $\tau \rightarrow e \pi^0$ Finally, the efficiency is higher than previous (around 1.5x in average), while <1 background level is achieved.

SUSY parameters from $\tau \rightarrow \mu \eta$ τ**→**μη' excluded region 80 60 40 previous (400fb⁻¹), \mathcal{B} <6.5x10⁻⁸ 40 new result with 900fb⁻¹, $\mathcal{B} \leq 2.3 \times 10^{-8}$ $Br(\tau \to \mu \eta) = 1.2 \times 10^{-7} |\delta_{32}|^2 \left(\frac{100}{m_{A^0}(GeV)}\right)^4 \left(\frac{\tan\beta}{60}\right)^6, |\delta_{32}|^2 = 1$ 20 M.J.Herrero et al, JHEP06 (2008) 079 100 125 150 175 200 \mathcal{M}_{A^0} (GeV/c²)

2010/7/23 35th ICHEP2010, Paris

search for $\ell V^0 (=\rho^0, K^{*0}, K^{*0}, \omega, \phi)$ previous result Data : 543 fb⁻¹ @ Belle, 451 fb⁻¹@BaBar (PLB664,35(2008)) (PRL100,071802(2008), PRL103,021801(2009)) •Differently from ℓP^0 , 2photon process could be large backgrounds for $\ell = e$. B<(0.3-1.9)x10⁻⁷ at 90%CL > π •New search with 854fb⁻¹ data sample •Detailed background study: e+It turns out that not only 2photon process but also ee+X process become large background for $\tau^- \rightarrow \mu^- \rho^0$ and $\tau \rightarrow \pi - \pi^0 v$ with γ -conversion becomes $e^{-K^{*0}/K^{*0}}$ backgrounds because $e/h(=\pi, K)$ separation is worse e in low momentum region. clear ppeak Fake K^{*0} main BG data **e+** due to $ee+\rho(?)$ e-miss KID signal 200 MC $(e\rho^0)$ 100 Finally, higher or similar efficiency is kept 0.6 b.8 Μππ (around 1.2x in average) while similar background level is achieved. $\tau\tau$ and $q\overline{q}$ MC 10 2010/7/23

Result for $\ell V^0 (=\rho^0, K^{*0}, K^{*0}, \omega, \phi)$

τ-→	Eff.	N _{BG} exp	UL (x10 ⁻⁸)	τ-→	Eff.	N _{BG} exp U	L (x10 ⁻⁸)
$e^- ho^0$	7.6%	0.29±0.15	1.8	e-K*0	4.4%	0.39±0.14	3. 2
$\mu^- ho^0$	7.1%	1.48±0.35	1. 2	$\mu^- K^{*0}$	3.4%	0.53±0.20	7.2
е-ф	4.2%	0.47±0.19	3. 1	e-K*0	4.4%	0.08±0.08	3.4
μ-φ	3.2%	0.06±0.06	8.4	$\mu^{-}\overline{K^{*0}}$	3.6%	0.45±0.17	7.0
e-w	2.9%	0.30±0.14	4.8	μ-ω	2.4%	0.72±0.18	4. 7

UL for $\tau \rightarrow \mu \rho^0$ is the most stringent among all the τ -LFV decays

Upper Limits on LFV τ Decay

Before this summer, …

New Upper Limits on LFV τ Decay

Search for $B^+ \rightarrow D^- \ell^+ \ell^+$

Majorana v allows a lepton number violating process, B+→h⁻ℓ+ℓ+ (h=π,K,ρ,K*,D,…), while Dirac v forbids it.

• Due to size of CKM matrix element, $B^+ \rightarrow D^- \ell^+ \ell^+$ will be the most sensitive.

Blinded region: no event is found after opening it

B+→	Eff.	sys	N _{BG} exp UL(x10 ⁻⁶)
D-e+e+	1.2%	8.6%	0.18±0.13	2.7
D⁻e+µ+	1.3%	10.1%	0.83±0.29	1.9
$D^-\mu^+\mu^+$	1.8%	8.8%	1.44±0.43	1.1

This first measurement would be nice guideline for experiments(such as Belle2, LHC..) and theoretical activities. We are planning to extend our analysis to other LV charmful B decay.

Summary

Lepton flavor violation is a good signature of NP.

We have updated search for τ LFV decays into ℓ+M⁰(=π⁰,η,η',ρ⁰,K*⁰,K^{*0},ω,φ) using the world-largest data sample obtained by KEKB/Belle

No LFV signals are observed yet and we set limits of branching faction around O(10⁻⁸).

→Improve sensitivity by factor ~100 from CLEO

•UL for $\tau\!\rightarrow\!\mu\rho^0$ is the most stringent among all the $\tau\text{-LFV}$ decays

•not only much larger data samples but also more effective BG rejection after detailed examination of the BG Lepton number violating B decay is a good signature of Majorana/Dirac neutrino discrimination.

First search for LV charmful B decay with 7.7x10⁸ B⁺B⁻ data sample 90%CL upper limits for the branching fraction is set as

 $\mathcal{B}(B^{+} \to D^{-} \ell^{+} \ell^{+}) < (2.7, 1.9, 1.1) \times 10^{-6} @ 90\% CL$ where $(\ell, \ell) = (e, e), (e, \mu), (\mu, \mu).$ Belle preliminary

Belle is starting the analyses for the various modes using its full data sample!(>1ab⁻¹)

Theoretical prediction for $B^+ \rightarrow D^- \ell^+ \ell^+$

A. The case of light neutrinos $(m_N < m_\pi)$

$$Br(B^+ \to D^- \ell^+ \ell^+) \sim 1.2 \times 10^{-31} \left(\frac{U_{N\ell}^2 m_N}{1 \text{ eV}}\right)^2$$

C. The case of heavy neutrinos $(m_N > m_{B_c})$

$$\operatorname{Br}(B^+ \to D^- \ell^+ \ell^+) \approx 1.1 \cdot 10^{-22} \times \left(\frac{100 \text{ GeV}}{m_N}\right)^2 \left(\frac{|U_N \ell|^2}{10^{-2}}\right)^2$$

Probing Majorana neutrinos in rare K and D, ~D_s, B, B_c meson decays. G. Cvetic, Claudio Dib, (Santa Maria U., Valparaiso), Sin Kyu Kang, (Seoul, Nat. U. Technol.), C.S. Kim, (Yonsei U. & IPAP, Seoul). May 2010. 26pp. e-Print: arXiv:1005.4282 [hep-ph]

eK*, eK*, eρ modes

