ICHEP 2010, Paris, July 22

Combined measurement of $F_2^{c\bar{c}}$ and effect on PDF fits

Massimo Corradi

INFN Bologna

on behalf of the H1 and ZEUS and collaborations

Heavy Quark production in DIS

Fixed Flavour–Number Scheme (FFNS)

- c (b)only from hard scattering,
- 3 (4) active flavours in p

Zero Mass Variable Flavour–Number Scheme (ZM-VFNS)

 $\boldsymbol{c},\boldsymbol{b}$ active flavours in \boldsymbol{p}

leading order: boson-gluon fusion

Direct access to g(x)

FFNS spoiled when Q^2 , $p_T \gg m_Q$ e.g. large log (Q^2/m_Q^2)

resums $\log(Q^2/m^2)$

c,b: massless partons: ZM-VFNS fails at $Q^2 \leq \mathcal{O}(m_Q^2)$

needed at high-energy colliders

c, b PDFs can be directly tested in DIS

PDF fits and charm threshold, GM-VFNS

HERA DIS data are in a Q^2 range where the charm mass effects are relevant: ZM-VFNS can not be used

Generalised Mass-VFNS (GM-VFNS):

interpolates between FFNS at $Q^2 < m_c^2$ and ZM-VFNS at $Q^2 >> m_c^2$ different HQ schemes developed recently

GM-VFNS PDFs have a significant dependence on

- the HQ scheme
- the charm mass

Impact of different GM-VFNS schemes on W/Z cross section at LHC up to 3% at NLO

Precise charm DIS data expected to test/constrain these GM-VFN schemes

Data sets used in the prel. H1-ZEUS combination

- ZEUS, *D**+, HERA I, L=82+37 *pb*⁻¹ (hep-ex/9908012, hep-ex/0308068)
- H1, *D**+, HERA I, L=47 *pb*⁻¹ (hep-ex/0608042)
- H1, D*+, HERA II prel., L=340 pb⁻¹ (high-Q² part: arXiv:0911.3989)
- ZEUS, *D*⁺, *D*⁰, 2005 data, L=134 *pb*⁻¹ (arXiv:0704.3562 [hep-ex])
- ZEUS, μ, 2005 data, L=121 pb⁻¹ (arXiv:0904.3487 [hep-ex])
- H1, lifetime tag, HERA I, L=57 pb⁻¹ (hep-ex/0411046, hep-ex/0507081)
- H1 lifetime tag, HERA II prel, L=189 pb^{-1} (now in arXiv:0907.2643)

Secondary vertex significance (H1 lifetime tag)

$F_2^{c\overline{c}}$

 $F_2^{c\bar{c}}(x,Q^2)$ is the part of the F_2 structure function with a $c\bar{c}$ in the final state:

$$\frac{d^2 \sigma^{c\bar{c}}}{dx dQ^2} = \frac{2\pi \alpha^2}{xQ^4} Y_+ \left[F_2^{c\bar{c}}(x,Q^2) - \frac{y^2}{Y_+} F_L^{c\bar{c}}(x,Q^2) \right]$$

$$Y_{+} = 1 + (1 - y)^{2}$$

(note: definition may differ from that used by theorists, see Forte et al. arXiv:1001.2312)

D mesons (or μ) production measured in "visible" phase space typically $|\eta(D^*)| < 1.5$, $p_T(D^*) > 1.5$ GeV $F_2^{c\bar{c}}$ extracted using theory-based correction:

$$F_2^{c\overline{c}}(x,Q^2) = \sigma_{\text{vis,bin}} \frac{F_2^{c\overline{c},\text{theo.}}(x,Q^2)}{\sigma_{\text{vis,bin}}^{\text{theo.}}}$$

Similarly for inclusive lifetime tagging:

experiments mostly sensitive to events with several central high- p_T tracks

extraction of $F_2^{c\overline{c}}$

- $F_2^{c\bar{c}}$ re-calculated consistently for D, μ data starting from $\sigma_{\rm vis}$
- HVQDIS NLO program used (Harris, Smith). good description of $\eta(D)$, $p_T(D)$
- non-perturbative quantities taken from e^+e^- and ep data:
 - fragm. functions
 - fragm. fractions
- Typical kin. acceptances: $\mathcal{A} = \sigma_{\rm vis}/\sigma_{\rm tot}$

 $D^*: 0.25 < \mathcal{A} < 0.70$ for $2 < Q^2 < 200 \ {\rm GeV^2}$

 $\begin{array}{ll} \mu : \ 0.25 < \mathcal{A} < 0.40 \\ \text{for } 30 < Q^2 < 1000 \ \text{GeV}^2 \end{array}$

Combined F_2^c compared to single measurements

- method similar to inclusive combination arxiv:0911.0884
- 156 measurements + 54 correl. syst.
 ⇒ 46 combined points
- data are compatible $\chi^2/ndof = 88/110$
- precision 7 10% for $6.5 \le Q^2 \le 60 \text{ GeV}^2$
- $Q^2 \leq 4 \text{ GeV}^2$ $D^* \text{ HERA-I data}$
- $Q^2 \leq 20 \text{ GeV}^2$ sizeable correlated theoretical uncertainty

H1-ZEUS combined F_2^c compared to NLO and NNLO calculations

H1-ZEUS combined F_2^c compared to HERAPDF1.0

Adding combined $F_2^{c\bar{c}}$ to HERAPDF1.0 Fit

Effect on PDFs Alternative HQ schemes

RT STandard (MSTW)

- small change in g(x)
- dependence on m_c and HQ scheme of the same size of PDF uncertainty

ACOT (as in CTEQ6.6)

10⁻²

10⁻¹

0.6

0.4

0.2

10-4

xS (× 0.05)

10⁻³

April 2010

HERA Inclusive Working Group

x¹

April 2010

HERA Inclusive Working Group

 \mathbf{x}^{1}

NNLO Fit

- "approximated" NNLO RT GM-VFNS
- expected to be less dependent on HQ scheme
- agrees better at low x, Q^2

overall agreement similar to NLO

• $m_c = 1.4 \text{ GeV}$ $\chi^2_{charm} = 54/41$ $m_c = 1.65 \text{ GeV}$ $\chi^2_{charm} = 186/41$

Conclusions

- Preliminary combination of H1 and ZEUS $F_2^{c\bar{c}}$ data
- data from $Q^2 = 2 \text{ GeV}^2$ to 1000 GeV^2
- precision of 7-10% on a wide kinematic range
- data more precise than spread between different theor. predictions
- $F_2^{c\bar{c}}$ fitted together with inclusive HERA data
- significant dependence of the results on the choice of m_c and of the HQ scheme.

HERA, H1 and ZEUS

HERA • $E(e^{\pm}) = 27.5 \text{GeV}$ E(p) = 920 GeV• HERA-I: 1992-2000 HERA-II: 2003-2007 **HERA** delivered 600 Integrated Luminosity (pb⁻¹) LER/MER , HERA II e⁺ 500 400 HERA II e⁻ 300 200 HERA 100 HERA II e⁺ 0 1200 1400 0 200 400 600 800 1000 days of running • $\mathcal{L} \simeq 0.5 \text{fb}^{-1}$ (per experiment)

Combination method

Combination done taking into account correlated exp. and theo. uncertainties

Similar method as for inclusive combination: find the values of the "true" $F_2^{c\bar{c}}$ (m^i) and of the "systematic shifts" (b_j) that minimize the function

(where $\mu^i = i^{\text{th}}$ measurement)

MC experiments show that this is an unbiased estimator

Exp. syst. independent between H1 and ZEUS

156 original measurements

54 correlated uncertainties

46 combined $F_2^{c\bar{c}}$ points

Theor. unc. correlated between data sets:

- fragmentation function
- fragmentation fractions
- HVQDIS: $\mu_f = \mu_r = \sqrt{Q^2 + m_c^2}$ varied by fact. 2, m_c , PDFs

Procedural unc. on the χ^2 function form

Fits With Different HQ schemes: RT-Optimized, ACOT

RT-optimized: smoother FFNS-VFNS transition (see R. Thorne, DIS 2010)

-
$$m_c = 1.4 \text{ GeV}$$
 : $\chi^2_{\text{charm}} = 64/41$
- $m_c = 1.65 \text{ GeV}$: $\chi^2_{\text{charm}} = 100/41$

H1 and ZEUS

$$Q^2 = 2 \text{ GeV}^2$$

 $Q^2 = 4 \text{ GeV}^2$
 $Q^2 = 4 \text{ GeV}^2$
 $Q^2 = 6.5 \text{ GeV}^2$
 $Q^2 = 12 \text{ GeV}^2$
 $Q^2 = 12 \text{ GeV}^2$
 $Q^2 = 20 \text{ GeV}^2$
 $Q^2 = 20 \text{ GeV}^2$
 $Q^2 = 20 \text{ GeV}^2$
 $Q^2 = 200 \text{ GeV}^2$
 $Q^2 = 1000 \text{ GeV}^2$

ACOT-full (as used by CTEQ)

-
$$m_c = 1.4 \text{ GeV}$$
: $\chi^2_{\text{charm}} = 89/41$
- $m_c = 1.65 \text{ GeV}$: $\chi^2_{\text{charm}} = 41/41$

HERAPDF1.0+ $F_2^{c\bar{c}}$ **FFNS FIT**

χ^2 of fits with different HQ schemes:

HQ scheme	$m_c = 1.4 \text{ GeV}$	$m_c = 1.65 \text{ GeV}$
NLO:		
RT STandard	$\chi^2_{\rm charm} = 134/41$	$\chi^2_{\rm charm} = 43/41$
RT Optimized	$\chi^2_{\rm charm} = 64/41$	$\chi^2_{\rm charm} = 100/41$
ACOT	$\chi^2_{\rm charm} = 89/41$	$\chi^2_{\rm charm} = 41/41$
FFNS	$\chi^2_{\rm charm} = 52/41$	$\chi^2_{\rm charm} = 249/41$
NNLO:		
RT STandard	$\chi^2_{ m charm} = 54/41$	$\chi^2_{ m charm} = 186/41$

ACOT scheme with/without $F_2^{c\bar{c}}$ data

Thanks to Amanda Cooper Sarkar W and Z rapidity distributions

Charm production from $Q^2 \sim 0$ to 400 GeV²

$$\begin{split} &\sigma(\gamma^* p \to D^{*\pm} X) \\ &\text{for } p_T(D^*) > 1.5 \text{ GeV}^2, \ |\eta(D^*)| < 1.5 \\ &d\sigma(ep \to D^* X)/dQ^2 \propto 1/Q^2 \text{ for } Q^2 \ll m_c^2 \\ &d\sigma(ep \to D^* X)/dQ^2 \propto 1/Q^4 \text{ for } Q^2 \gg m_c^2 \end{split}$$

Acceptance of ZEUS muon analysis

Charm NLO

$$A = \frac{N(\mu; p_T > 1.5, -1.6 < \eta < 2.3)}{N(\mu)}$$

versus p_T or yof the highest- p_T c/\overline{c} quark