Hadronic $b \rightarrow c$ decays at Belle

$\left(\mathrm{B}^{+} \rightarrow \mathrm{D}^{(4)} \mathrm{K}\right.$ Dalitz, $\left.\mathrm{B}^{0} \rightarrow \mathrm{D}_{\mathrm{s}}{ }^{*} \mathrm{~h}, \mathrm{~B}^{-} \rightarrow \overline{\mathrm{p}} \Lambda \mathrm{D}\right)$

Nikhil J Joshi,
Tata Institute of Fundamental Research, India (ICHEP, 23/07/2010)

Outline

Efforts put

- in the direct determination of φ_{3}
- $\mathrm{B}^{ \pm} \rightarrow \mathrm{D}^{(*)} \mathrm{K}^{ \pm}$Dalitz or GGSZ (ref: Giri et al, Phys. Rev. D, 68, 054018 (2003))
- towards indirect determination of φ_{3}
- $\left.\mathrm{B}^{0} \rightarrow \mathrm{D}_{\mathrm{s}}{ }^{(}{ }^{*}\right) \mathrm{h}$ in $\mathrm{B}^{0} \rightarrow \mathrm{D}^{(*)} \pi$ TCPV (ref: Dunietz et al, Phys. Rev. D, 65, 054025 (2002))
- in testing of the generalized factorization
- $\mathrm{B}^{-} \rightarrow \overline{\mathrm{p}} \Lambda \mathrm{D}$ (ref: C. Chen, Phys. Rev. D, 78, 054016 (2008))

CKM matrix and $\Phi_{3}(\gamma)$ Angle

- Current CKM picture, as shown in FPCP10 by the CKMfitter group

Angle φ_{3} needs more efforts and is more difficult to estimate

Event Selection

- charged tracks:
- $|d r|<0.2 \mathrm{~cm},|\mathrm{dz}|<4 \mathrm{~cm}$
- photon:
- $\mathrm{E}_{\gamma}>100 \mathrm{MeV}$
- charged hadron (K / π) :
- $\mathscr{L}_{\text {Total }}=\mathscr{L}_{\text {CDC }} \times \mathscr{L}_{\text {TOF }} \times \mathscr{L}_{\text {ACC }}$
- $\mathscr{L}(K / \pi)>0.6$ for a kaon
- efficiency $\sim 85 \%$, fake rate $\sim 10 \%$
- $K_{s}{ }^{0}$:
- reconstructed from $\pi^{+} \pi^{-}$
- quality check based on vertex topology
- $\mid \mathrm{M}\left(\mathrm{Ks}^{0}\right)$ - $\mathrm{MPDG} \mid<10 \mathrm{MeV} / \mathrm{c}^{2}$

Continuum suppression:

Likelihood based on event topology

- Fisher 9 ,
- B meson thrust angle $\cos \theta_{\text {th }}$,
- B meson polar angle $\cos \theta_{B}$

B meson Reconstruction:

- B^{0} candidate selection based on kinematically uncorrelated $\Delta \mathrm{E}$ and M_{bc} variables

$$
\begin{aligned}
M_{\mathrm{bc}} & =\sqrt{E_{\mathrm{beam}}^{2}-\left(\sum_{i} p_{i}^{*}\right)^{2}} \\
\Delta E & =\sum_{i} E_{i}^{*}-E_{\mathrm{beam}}
\end{aligned}
$$

where,
(E_{i}^{*}, p_{i}^{*}) are the $i^{\text {th }}$ final-state 4-momentum in the center-of-mass frame, and
$E_{\text {beam }}$ is the beam energy

All results on $657 \mathrm{M} \mathbf{B} \overline{\mathrm{B}}$ events!

$\mathbf{B}^{ \pm} \rightarrow \mathbf{D}^{*} \mathbf{K}^{ \pm}$

(Dalitz)

$\mathrm{B}^{ \pm} \rightarrow \mathrm{DK}^{ \pm}$

interfere

ADS

Dalitz

- $\mathrm{f}=\mathrm{K}^{+} \pi^{-}$
- col. sup. x Cabibbo allowed ~ col. allowed x Cabibbo sup.
- no control over strong phases
- $\mathrm{f}=\mathrm{K}_{s}{ }^{0} \pi^{+} \pi^{-}$
- Cabibbo allowed modes
- large strong phases due to resonances
- most sensitive
- statistically limited
- simpler analysis-wise

$$
D_{1,2}^{0}=\frac{D^{0} \pm \bar{D}^{0}}{\sqrt{2}}
$$

> model dependent/ independent dependency:
> D^{0} decay model (Isobar, BW)

$\mathrm{B} \rightarrow \mathrm{D}^{(4)} \mathrm{K}$ Dalitz (model dependent)

- Amplitude for $\mathrm{B}^{ \pm} \rightarrow \mathrm{DK}^{ \pm}$process can be expressed as

$$
M_{ \pm}=f\left(m_{ \pm}^{2}, m_{\mp}^{2}\right)+r_{ \pm} e^{ \pm i \phi_{3}+i \delta} f\left(m_{\mp}^{2}, m_{ \pm}^{2}\right)
$$

$$
m_{ \pm}^{2}=m_{K_{S}^{0} \pi \pm}^{2}
$$

\longrightarrowratio of magnitudes of interfering amplitudes (expected ~ 1\%)
amplitude of $\stackrel{(-)}{\mathrm{D}^{0}} \rightarrow \mathrm{~K}_{5} \pi^{+} \pi^{-}$decay :

1. determined from Dalitz plot of large continuum data,
2. flavor-tagged by soft pion charge in $\mathrm{D}^{* \pm} \rightarrow \mathrm{D} \pi_{\mathrm{s}}{ }^{ \pm}$
3. assuming isobar model, BW shapes for resonances

Analysis procedure:

- first step: background fractions are obtained from $\Delta \mathrm{E}-\mathrm{M}_{\mathrm{bc}} 2 \mathrm{D}$ unbinned maximum likelihood (UML) fit
- Second step: Dalitz, with likelihoods (continuum separation) inside the fit using $x_{ \pm}=r_{ \pm} \cos \left(\pm \varphi_{3}+\delta\right)$ and $y_{ \pm}=r_{ \pm} \sin \left(\pm \varphi_{3}+\delta\right)$

$\mathrm{B} \rightarrow \mathrm{DK} \Delta \mathrm{E}-\mathrm{M}_{\mathrm{bc}}$

A 2D UML fit with free parameters: background relative fractions

Note: continuum background is separated into charm and u,d,s components

$\mathrm{B} \rightarrow \mathrm{D}^{*} \mathrm{~K} \Delta \mathrm{E}-\mathrm{Mbc}_{\mathrm{bc}}$

- $D^{*} \rightarrow D \pi^{0}$

$D^{*} \rightarrow D \gamma$

$B \rightarrow D K$ Dalitz

$$
\mathrm{B}^{+} \rightarrow \mathrm{DK}^{+}
$$

$$
\mathrm{B}^{-} \rightarrow \mathrm{DK}^{-}
$$

$\mathrm{B} \rightarrow \mathrm{D}^{(4)} \mathrm{K}$ Dalitz (model dependent)

To improve sensitivity, combine various $B^{ \pm} \rightarrow D^{(*)} K^{ \pm}$modes

- combined $\mathrm{B}^{ \pm} \rightarrow \mathrm{D}^{(*)} \mathrm{K}^{ \pm}$results:

Parameter	1σ interval	2σ interval	Systematic error	Model uncertainty
ϕ_{3}	$\left(78.4_{-11.6}^{+10.8}\right)^{\circ}$	$54.2^{\circ}<\phi_{3}<100.5^{\circ}$	3.6°	8.9°
$r_{D K}$	$0.160_{-0.038}^{+0.040}$	$0.084<r_{D K}<0.239$	0.011	$+0.050-0.010$
$r_{D^{*} K}$	$0.196_{-0.069}^{+0.072}$	$0.061<r_{D^{*} K}<0.271$	$+0.062-0.012$	
$\delta_{D K}$	$\left(136.7_{-15.0}^{+13.0}\right)^{\circ}$	$102.2^{\circ}<\delta_{D K}<162.3^{\circ}$	4.0°	22.9°
$\delta_{D^{*} K}$	$\left(341.9_{-19.6}^{+18.0}\right)^{\circ}$	$296.5^{\circ}<\delta_{D^{*} K}<382.7^{\circ}$	3.0°	22.9°

possible to remove model uncertainty:
perform a fit in the momentum-binned Dalitz plot (much along the original idea of GGSZ)

$B \rightarrow D_{s}{ }^{\left({ }^{*}\right)} \mathbf{h}$
 ($\mathrm{h}=\mathrm{K} / \pi$)

Time dependent CP Analysis

$$
B^{0} \rightarrow D^{(*) \mp} \pi^{ \pm}
$$

- theoretically cleanliest method of extracting the $\sin \left(2 \varphi_{1}+\varphi_{3}\right)$ and hence the φ_{3}
- Initial state B^{0} can be found in the state $\mathrm{D}^{*} \pi^{+}$state in two ways: either through CFD or via mixing followed by DCSD

(a) CFD

(b) DCSD
- The DCSD involves $b \rightarrow u$ transition, and the phase φ_{3} shows up due to the interference between the two as,

$$
R_{D^{(*)} \pi} \sin \left(2 \phi_{1}+\phi_{3}\right)
$$

where, $R_{D^{*} \pi}$ is the ratio of magnitude of DCSD and CFD amplitude and must be provided externally.

$\mathrm{B}^{0} \rightarrow \mathrm{D}_{\mathrm{s}}{ }^{*} \mathrm{~h}$

- $\mathrm{B}^{0} \rightarrow \mathrm{Ds}^{*}{ }^{*} \pi^{-}$is related to $\mathrm{B}^{0} \rightarrow \mathrm{D}^{*}+\pi^{-}$(DCSD) by $\mathrm{SU}(3)$ symmetry DCSD

which means, $\mathcal{R}_{D^{(*)} \pi}=\tan \theta_{C} \frac{f_{D^{(*)}}}{f_{D_{s}^{(*)}}} \sqrt{\frac{\mathcal{B}\left(B^{0} \rightarrow D_{s}^{(*)+} \pi^{-}\right)}{\mathcal{B}\left(B^{0} \rightarrow D^{(*)-} \pi^{+}\right)}}$

Theory predicts $R_{D(*) \pi} \sim 2 \%$

$\mathrm{B}^{0} \rightarrow \mathrm{D}_{\mathrm{s}}{ }^{*} \mathrm{~h}$

- $\mathrm{B}^{0} \rightarrow \mathrm{D}_{\mathrm{s}}{ }^{*} \mathrm{~K}^{+}$is related to CFD W-exchange by $\mathrm{SU}(3)$ symmetry

CFD W-exchange

$\mathrm{B}^{0} \rightarrow \mathrm{D}_{\mathrm{s}}{ }^{*} \mathrm{~K}^{+}$

- $B^{0} \rightarrow D_{s}{ }^{*}-K^{+}$is expected to be enhanced due to re-scattering effects \Rightarrow needs check!
(ref: Phys. Rev. Lett., 78, 3999 (1997)
Phys. Lett. B, 666, 185 (2008))

$\mathrm{B}^{0} \rightarrow \mathrm{D}_{\mathrm{s}} h$

A $\Delta E-M_{D s} 2 D$ UML fit is performed

- signal is reconstructed in three $\mathrm{D}_{\mathrm{s}}{ }^{+}$ decay channels: $\varphi \pi, \mathrm{K}^{*}(892)^{0} \mathrm{~K}, \mathrm{~K}_{s}{ }^{0} \mathrm{~K}$
- $\mathrm{B}^{0} \rightarrow \mathrm{D}_{\mathrm{s}}{ }^{+} \pi^{-}$and $\mathrm{B}^{0} \rightarrow \mathrm{D}_{\mathrm{s}^{+}} \mathrm{K}^{-}$cross-feed each other
- data fitted simultaneously in 3×2 mutually exclusive samples

We obtained,

$$
\begin{aligned}
\mathcal{B}\left(B^{0} \rightarrow D_{s}^{+} \pi^{-}\right)= & (1.99 \pm 0.26 \pm 0.18) \times 10^{-5} \\
& \text { and } \\
\mathcal{B}\left(B^{0} \rightarrow D_{s}^{-} K^{+}\right)= & (1.91 \pm 0.24 \pm 0.17) \times 10^{-5}
\end{aligned}
$$

with significances 8.0σ and 9.2σ, respectively.
$\mathrm{B}^{0} \rightarrow \mathrm{D}_{\mathrm{s}} \mathrm{K}^{+}$

$$
\mathcal{R}_{D \pi}=[1.71 \pm 0.11(\text { stat }) \pm 0.09 \text { (syst) } \pm 0.02(\text { th })] \%
$$

$\mathrm{B}^{0} \rightarrow \mathrm{D}_{\mathrm{s}}{ }^{*} \mathrm{~h}$

An UML fit to $\Delta \mathrm{E}$ is performed to six exclusive samples

$\left\|\mathrm{M}_{\mathrm{Ds}}-\mathrm{M}_{\text {PDG }}\right\|<15 \mathrm{MeV} / \mathrm{C}^{2}$
$132 \mathrm{MeV} / \mathrm{c}^{2}<\Delta \mathrm{M}<168 \mathrm{MeV} / \mathrm{C}^{2}$

Ve obtain,
$\mathcal{B R}\left(B^{0} \rightarrow D_{s}^{*+} \pi^{-}\right)=\left(1.75_{-0.34}^{+0.32}\right) \times 10^{-5}$
$\mathcal{B R}\left(B^{0} \rightarrow D_{s}^{*-} K^{+}\right)=\left(2.02_{-0.31}^{+0.33}\right) \times 10^{-5}$.
with significances 6.1σ and 8.0σ, respectively

$$
\mathrm{D}_{\mathrm{s}}{ }^{+} \rightarrow \mathrm{K}_{\mathrm{s}} \mathrm{O}^{+}
$$

$$
\mathcal{R}_{D^{*} \pi}=[1.58 \pm 0.15(\text { stat }) \pm 0.10(\text { syst }) \pm 0.03(\mathrm{th})] \%
$$

$B^{-} \rightarrow \bar{p} \Lambda D$

$\mathrm{B}^{-} \rightarrow \overline{\mathrm{p}} \Lambda \mathrm{D}: \mathrm{A}$ test for generalized factorization

- The vertex (and the penguin correction thereof) of the hadronic matrix elements of four quark operators can be absorbed in the effective Wilson coefficients $c^{\text {eff }}$, so that the momentum dependence is smeared out
- Under generalized factorization:
three body amplitudes

1. current type
2. transition type
3. hybrid

FIG. 1. Two types of the $B \rightarrow \mathbf{B} \overline{\mathbf{B}}^{\prime} M_{c}$ decay process: (a) current type and (b) transition type.

- Under generalized factorization approximation, one predicts the decay amplitude

$$
\mathcal{B}\left(B^{-} \rightarrow \bar{p} \Lambda D^{0}\right) \sim 1.1 \times 10^{-5}
$$

proceeding via threshold enhancement.

$B^{-} \rightarrow \overline{\mathrm{p}} \Lambda \mathrm{D}^{0}$

An UML fit to $\Delta \mathrm{E}-\mathrm{M}_{\mathrm{bc}}$ is performed

- $\mathcal{L}(\mathrm{p} / \mathrm{h})>0.6$ for a proton
- Λ selection

1. quality check vertex topology
2. $1.111 \mathrm{GeV} / \mathrm{c}^{2}<\mathrm{M}_{\Lambda}<1.121 \mathrm{GeV} / \mathrm{c}^{2}$

- D meson is reconstructed in two decay channels

1. $D^{0} \rightarrow K \pi$
2. $\mathrm{D}^{0} \rightarrow \mathrm{~K} \pi \pi^{0}$

We report,

$$
\mathcal{B}\left(B^{-} \rightarrow \bar{p} \Lambda D^{0}\right)=\left(1.40_{-0.24}^{+0.27} \pm 0.16\right) \times 10^{-5}
$$

with a significance of 8.6σ.

$B \rightarrow p \Lambda D$

We also observe $\mathrm{p} \Lambda$ threshold enhancement near $2 \mathrm{GeV} / \mathrm{c}^{2}$

$$
\underline{D}^{0} \rightarrow K \pi
$$

$$
\underline{\mathbf{D}}^{0} \rightarrow \mathbf{K} \pi \pi^{0}
$$

Conclusion

- We report results from $\mathrm{B}^{ \pm} \rightarrow \mathrm{D}^{(*)} \mathrm{K}^{ \pm}$Dalitz analysis done using isobar model, as

$$
\phi_{3}=\left(78.4_{-11.6^{\circ}}^{\circ} \pm 3.6^{\circ}(\text { syst }) \pm 8.9^{\circ}(\text { model })\right)
$$

- A model-independent study is undertaken to reduce the model-uncertainties.
- $\mathrm{B}^{0} \rightarrow \mathrm{D}_{\text {sh }}$ measurements yield $\mathrm{R}_{\mathrm{D} \pi}=[1.71 \pm 0.11$ (stat) ± 0.09 (syst) ± 0.02 (th) $] \%$, consistent with the theoretical predictions of 2%
- $\mathrm{B}^{0} \rightarrow \mathrm{D}_{\mathrm{s}}{ }^{*} \mathrm{~h}$ measurements yield $\mathrm{RD}^{*} \pi=[1.58 \pm 0.15$ (stat) ± 0.10 (syst) ± 0.03 (th)] $\%$
- $\mathrm{B}^{-} \rightarrow \mathrm{p} \Lambda \mathrm{D}^{0}$ study shows agreement with the expectations from the generalized factorization approach

Back up

$B \rightarrow D^{*} K$ Dalitz

Result:

Fit Explained

Result:

Fit Explained

Individual branching fractions of $\mathrm{B}^{-} \rightarrow \mathrm{p} \Lambda \mathrm{D}$

$\mathbf{D}^{0} \rightarrow \mathbf{K} \pi$

$$
\mathcal{B}\left(B^{-} \rightarrow \bar{p} \Lambda D^{0}(K \pi)\right)=\left(1.43_{-0.30}^{+0.34} \pm 0.14\right) \times 10^{-5}
$$

with a significance of 7.70σ.
$\mathbf{D}^{0} \rightarrow \mathbf{K} \pi \pi^{0}$

$$
\mathcal{B}\left(B^{-} \rightarrow \bar{p} \Lambda D^{0}\left(K \pi \pi^{0}\right)\right)=\left(1.35_{-0.40}^{+0.44} \pm 0.18\right) \times 10^{-5}
$$

with a significance of 3.85σ.

