

Measurements of Charmless B Decays at Belle

Outline

- •Introduction
- •B \rightarrow Xs η
- •Summary

M.-Z. Wang on behalf of the Belle Collaboration 2010/7/23

Motivations for $B \to X_s \eta$

- Due to the uncertainty of hadronization effect, it is theoretically more accurate to estimate the inclusive B decay processes
- Direct CP violations are expected in final state with η/η' in two-body B decays

penguin – tree interference

$B \to X_s \eta'$

Observed by CLEO and later confirmed by BaBar

PDG average branching fraction: (4.2 ± 0.9) \times 10^{-4}

Proposals for large branching fraction and high mass signal:

- QCD U(1) anomaly coupling of η' to two gluons
- Intrinsic charm content of η'
- New physics?

QCD anomaly?

$B \to X_s \eta \text{ Analysis}$

657M BB

To be submitted to PRL

→ $Kn\pi$ (n ≤ 4, n_{π^0} ≤ 1)

Sum of exclusive modes:

$$B \to X_s \eta \ (p_{\eta}^{cm} > 2.0 \ \mathrm{GeV/c})$$

Best candidate is that with

$$\chi^{2}$$
 = $\chi^{2}{}_{\Delta E}$ + $\chi^{2}{}_{\rm vertex}$; where $\chi^{2}{}_{\Delta E}$ = (Δ E/ $\sigma_{\Delta E}$) 2
$$\Delta E = E_{B}^{*} - E_{\rm beam}^{*}$$

Signal yield is extracted using beam-constrained mass

$$M_{\rm bc} = \sqrt{(E_{\rm beam}^*)^2/c^4) - (|\mathbf{p_B^*}|)^2/c^2}$$

Efficiency determined from MC

- Efficiency shown not including $\eta \to \gamma \gamma$ (39.30%).
- \cdot Fits are performed in 11 bins of M_{χ_c}

$B \rightarrow X_s \eta$ Charm Backgrounds

- \blacksquare Many modes (mostly b \rightarrow c decays) have identical final states to $X_sη$
 - Most suppressed by $p_{\eta} > 2.0 \text{ GeV/c}$
 - Vetoes on D^(*) mass windows are applied for what remains.
 - Remaining b \rightarrow c backgrounds divided into 5 PDFs:

 - All other $b \rightarrow c$ modes
 - PDF shapes come from MC.
 - Normalizations from:
 - $D^{(*)} \eta$: Belle measurement
 - $D^{(*)}\pi\eta$: best fit to veto windows (shown at right).
 - Other $b \rightarrow c$: MC expectation.
 - Best fit to veto is tested on D^(*)η, gives consistent results with previous Belle measurement.

b → s Backgrounds

- \blacksquare A small background is identified from b \rightarrow s decays. The expected contamination is subtracted from fitted yields.
 - B \rightarrow X_s γ (< 1 event over all bins)
 - B \rightarrow X_s η' (< 2 events over all bins)
 - B $\rightarrow \pi \eta$ (~ 5 events in lowest bin)
 - B \rightarrow X_d η (19.1 ±2.3 events over all bins)
 - Since this is not well measured, estimated from data by changing $X_s \to X_d$ and performing fit procedure in bins of M_{Xd} :

- ullet Mis-ID of M_{Xd} as M_{Xs} estimated from MC
- ⇒Estimated X_d η events in the X_s η data: 19.1 ±2.3 events

Observed signal yield for $B \to X_s \eta$

$B \to X_s \eta$ Branching Fraction

Errors are statistical, systematic, and modeling.

- **■**Lower mass range yields are consistent with previous measurements.
- ■No strong suppression relative to $X_s\eta'$, similar spectral shape.
- $\rightarrow \eta'$ -specific explanations unlikely for $B \rightarrow X_s \eta'$ signal

For X_s mass range 0.4 – 2.6 GeV/c²:

Prev. unobserved signal at high Mxs

$$\mathcal{B}(B \to X_s \eta)^* = (26.1 \pm 3.0(\text{stat})^{+1.9}_{-2.1}(\text{syst})^{+4.0}_{-7.1}(\text{model})) \times 10^{-5}$$

$$\mathcal{B}(B \to X_s \eta') = (42\pm 9) \times 10^{-5}$$

^{*}assuming JETSET hadronization.

Direct CP Asymmetry, A_{CP}

Measured over self-tagged modes only:

$$A_{\rm CP} = \frac{N_b - N_{\overline{b}}}{N_b + N_{\overline{b}}} \qquad {^{8} \atop \checkmark} 0.6$$

$M_{X_s}({ m GeV}/c^2)$	$A_{CP}(10^{-2})$
0.4 – 0.6	$-35\pm18\pm2$
0.6 - 0.8	$2\pm40\pm13$
0.8 - 1.0	$-4\pm7\pm2$
1.0-1.2	$-26 \pm 15^{+3}_{-4}$
1.2 - 1.4	$-22 \pm 11^{+2}_{-3}$
1.4 - 1.6	$-15\pm12^{+2}_{-3}$
1.6-1.8	$-25\pm13^{+2}_{-3}$
1.8 - 2.0	$-31 \pm 26 \pm 6$
2.0 – 2.2	$34 \pm 20^{+4}_{-3}$
2.2 – 2.4	$2 \pm 32 \pm 5$
2.4 – 2.6	$-40 \pm 36^{+7}_{-12}$
0.4 - 2.6	$-13 \pm 4^{+2}_{-3}$
1.0-2.6	$-15\pm 6\pm 3$
1.8-2.6	$0\pm14\pm5$

For X_s mass range 0.4 - 2.6 GeV/ c^2 :

$$A_{\rm CP} = -0.13 \pm 0.04 ({\rm stat})^{+0.02}_{-0.03} ({\rm syst})$$

Summary and Outlook

- \blacksquare First inclusive measurement for $B \to X_s \eta$
- Large rate observed and similar M_{Xs} spectral shape as $B \to X_s \eta'$ (explanation needed for both $B \to X_s \eta'$ and $B \to X_s \eta$)
- \blacksquare A_{CP} determined in bins of M_{Xs}
- With the largest data set at hand and improved tracking efficiency, more results will be released very soon
- Continuously search/update for more charmless B decay modes, with the hope to find surprises

BACKUP

Summary Tables

Signal Yield, Branching Fraction, A_{CP}

$M_{X_s}({ m GeV}/c^2)$	N_S	$\mathcal{B}(10^{-6})$	$A_{CP}(10^{-2})$
0.4 – 0.6	60 ± 12	$1.9 \pm 0.4 \pm 0.1 \pm 0.0$	$-35\pm18\pm2$
0.6 – 0.8	15 ± 9	$0.9 \pm 0.5 \pm 0.1^{+0.1}_{-0.0}$	$2\pm40\pm13$
0.8 - 1.0	250 ± 19	$17.0 \pm 1.3^{+0.9}_{-1.0} \pm 0.0$	$-4\pm7\pm2$
1.0-1.2	84 ± 14	$7.2 \pm 1.2^{+0.4}_{-0.5}{}^{+0.3}_{-1.4}$	$-26 \pm 15^{+3}_{-4}$
1.2 - 1.4	146 ± 17	$15.8 \pm 1.9 \pm 1.0^{+1.0}_{-1.1}$	$-22 \pm 11^{+2}_{-3}$
1.4 - 1.6	137 ± 18	$20.8 \pm 2.7^{+1.3}_{-1.4}{}^{+1.9}_{-2.8}$	$-15\pm12^{+2}_{-3}$
1.6-1.8	128 ± 18	$28.2 \pm 4.1 \pm 2.1^{+3.3}_{-6.1}$	$-25\pm13^{+2}_{-3}$
1.8 - 2.0	64 ± 18	$24.4 \pm 6.8^{+3.6}_{-3.4}{}^{+3.7}_{-7.8}$	$-31\pm26\pm6$
2.0 – 2.2	86 ± 18	$42.4 \pm 9.1^{+3.8}_{-4.3}{}^{+7.3}_{-8.7}$	$34 \pm 20^{+4}_{-3}$
2.2 – 2.4	49 ± 18	$36.8 \pm 13.5^{+5.9}_{-6.1}{}^{+7.6}_{-14.5}$	$2\pm32\pm5$
2.4 – 2.6	35 ± 13	$65.1 \pm 23.4^{+9.5}_{-12.8}{}^{+14.5}_{-28.3}$	$-40 \pm 36^{+7}_{-12}$
0.4 - 2.6	1053 ± 54	$261 \pm 30^{+19}_{-21}{}^{+40}_{-71}$	$-13 \pm 4^{+2}_{-3}$
1.0-2.6	728 ± 48	$241 \pm 30^{+18}_{-20}{}^{+40}_{-71}$	$-15\pm 6\pm 3$
1.8-2.6	233 ± 34	$169 \pm 29^{+15}_{-18}{}^{+33}_{-59}$	$0\pm14\pm5$

Systematic Errors (in %)

M_{X_s}	Efficiency	Fitting	Bkg.	Fragmen-	Other
(GeV/c^2)			Subtr.	tation	Model
0.4 - 0.6	± 4.9	$^{+1.6}_{-1.8}$	± 2.6	±0.0	± 0.7
0.6 – 0.8	± 5.1	$^{+5.1}_{-5.5}$	$^{+1.6}_{-12.5}$	$^{+9.6}_{-0.0}$	± 2.2
0.8 – 1.0	± 5.2	$^{+1.4}_{-1.6}$	$^{+0.1}_{-0.8}$	± 0.0	± 2.9
1.0 – 1.2	± 5.3	$^{+2.7}_{-2.9}$	$^{+0.9}_{-2.3}$	$^{+0.0}_{-18.3}$	± 4.8
1.2 – 1.4	± 5.4	$^{+2.3}_{-2.7}$	$^{+0.3}_{-1.3}$	$^{+0.0}_{-2.6}$	± 6.4
1.4 – 1.6	± 5.6	$+2.8 \\ -3.1$	$^{+0.2}_{-1.4}$	$^{+0.0}_{-9.6}$	± 9.2
1.6 – 1.8	± 5.7	± 4.2	$^{+0.7}_{-1.5}$	$^{+0.0}_{-18.4}$	± 11.5
1.8 – 2.0	± 5.9	$^{+13.3}_{-12.2}$	$^{+0.5}_{-3.0}$	$^{+0.0}_{-28.0}$	± 15.0
2.0 – 2.2	± 5.9	$^{+6.7}_{-7.8}$	$^{+0.4}_{-2.2}$	$+0.0 \\ -10.9$	± 17.3
2.2 – 2.4	± 6.0	$+14.6 \\ -14.8$	$^{+1.2}_{-4.1}$	$+0.0 \\ -33.4$	± 20.7
2.4 - 2.6	± 6.0	$^{+13.1}_{-17.9}$	$^{+0.8}_{-5.5}$	$^{+0.0}_{-37.4}$	22.3

PYTHIA Uncertainties

We check the distribution of mode categories between PYTHIA MC and data:

We recalculate the efficiency using the measured fractions of π^0 , use this difference in efficiency to estimate a systematic error. This error dominates the model uncertainty.

• All categories consistent within errors, except for modes with/without a π^0 , where we see excess of modes without π^0 over those with π^0 .

• The difference is studied bin-by-bin:

Blue – fraction of signal yield with a π^0 in MC Red – same fraction in data.