

CP Violation in **B** Decays at Belle

Takeo Higuchi

Institute of Particle and Nuclear Studies, KEK The Belle Collaboration

T.Higuchi (KEK) / ICHEP2010 (Paris)

Jul.23,2010

Contents

- *CP* violation measurement in $B^+ \rightarrow J/\psi K^+ \leftarrow \underline{New}$
- CP violation measurement in $B^0 \rightarrow K^+K^-K_s^{0}$
- Status of sin2 ϕ_1 measurement in $b \rightarrow c\overline{c}s$ modes

↑ <u>Stay tuned</u>

• Summary

CP Violation in $B^+ \rightarrow J/\psi K^+$

- The $B^+ \rightarrow J/\psi K^+$ decay mediated by the $b \rightarrow s u$ -penguin has a different weak phase from the tree.
- The interference between the tree and penguin can cause the direct *CP* violation in $B^+ \rightarrow J/\psi K^+$.

$$A_{CP}(B^+ \to J/\psi K^+) = \frac{Br(B^- \to J/\psi K^-) - Br(B^+ \to J/\psi K^+)}{Br(B^- \to J/\psi K^-) + Br(B^+ \to J/\psi K^+)}$$

CP Violation in $B^+ \rightarrow J/\psi K^+$

• Data sample: 772 x $10^6 B\overline{B}$ pairs at Y(4S) resonance

- The final Belle data sample.

Raw Asymmetry in $B^+ \rightarrow J/\psi K^+$

• $B^{\pm} \rightarrow J/\psi K^{\pm}$ event reconstruction

- B^{\pm} candidates are reconstructed from J/ψ and K^{\pm} .

Signal = single Gaussian **Background = ARGUS BG**

Peaking BG is negligibly small \rightarrow systematic uncertainty.

- Raw asymmetry: A_{CP}^{raw}
 - Measured raw asymmetry, which still includes K^+/K^- charge asymmetry in detection, is: $A_{CP}^{raw} = (-0.33 \pm 0.50)\%$
 - The "raw asymmetry" is obtained from yields of the $B^+ \rightarrow J/\psi K^+$ and the $B^- \rightarrow J/\psi K^-$ in a signal region.

K⁺/K⁻ Charge Asymmetry

- K^+/K^- charge asymmetry in detection: A_{ϵ}^{K+}
 - The K^+/K^- charge asymmetry in detection arises due to
 - Non-symmetric detector geometry,
 - Different interaction rates in material of K^+/K^- , and
 - Different KID efficiencies of K^+/K^- .
- The raw asymmetry A_{CP}^{raw} should be corrected for by the K^+/K^- charge asymmetry A_{ϵ}^{K+} .

K⁺/K⁻ Charge Asymmetry Estimation

K⁺/K⁻ charge asymmetry estimation

- The K^+/K^- detection asymmetry is estimated using the $D_s^+ \rightarrow \Phi[K^+K^-]\pi^+$ and $D^0 \rightarrow K^-\pi^+$, and their charge conjugate.

$$A_{\text{rec}}^{D_s^+} = A_{\text{FB}}^{D_s^+} + A_{\varepsilon}^{\pi^+}$$

$$A_{\text{rec}}^{D^0} = A_{\text{FB}}^{D^0} + A_{\varepsilon}^{\pi^+} - A_{\varepsilon}^{K^+}$$

$$A_{\text{rec}}^{D^0} = A_{\text{FB}}^{D^0} + A_{\varepsilon}^{\pi^+} - A_{\varepsilon}^{K^+}$$

$$A_{\text{rec}}^{D_s^+} - A_{\text{rec}}^{D^0} = A_{\varepsilon}^{K^+} \text{assuming } A_{\text{FB}}^{D_s^+} = A_{\text{FB}}^{D^0}$$

The K^+/K^- charge asymmetry depends on the $\cos\theta_{lab}^{\kappa}$ and p_{lab}^{κ} . We bin the signal regions in the $(\cos\theta_{lab}^{\kappa}, p_{lab}^{\kappa})$ plane into 10 boxes, and measure the charge asymmetry for each bin.

- Estimated K^+/K^- charge asymmetry -0.5 in detection (averaged over bins) is: -1 $A_{\epsilon}^{K+} = (-0.43 \pm 0.07 \pm 0.17)\%$

CP Violation Measurement in $B^+ \rightarrow J/\psi K^+$

to be submitted to PRD

• Fit result

- From the sum of A_{CP}^{raw} and A_{ϵ}^{K+} , we preliminarily determine

$$A_{CP} \left(B^{\pm} \to J / \psi K^{\pm} \right)$$

= $(-0.76 \pm 0.50 \pm 0.22)\%$

772 x 10⁶ *B*B pairs Belle preliminary

- We observe no significant CP violation in $B^+ \rightarrow J/\psi K^+$.

Systematic uncertainty

- The most dominating source to the systematic uncertainty is $D_s^+ \rightarrow \phi \pi^+$ statistics (0.17%).

$b \rightarrow sq\bar{q}$ Time-Dependent *CP* Violation

• Physics motivation for the *CP* violation measurement in the $b \rightarrow sq\bar{q}$ transition

In case of an extra *CP* phase from NP in the penguin loop $\delta \sin 2\phi_1 = \sin 2\phi_1^{\text{eff}} - \sin 2\phi_1 \neq 0$

T.Higuchi (KEK) / ICHEP2010 (Paris)

Interference in $B^0 \rightarrow K^+K^-K_s^0$ Final State

• $B^0 \rightarrow K^+ K^- K_S^0$ final state has several different paths.

- Fit to the Dalitz plot is need for the correct CPV measurement.

Interference in $B^0 \rightarrow K^+K^-K_S^0$ Final State

- $B^0 \rightarrow K^+ K^- K_s^0$ final state has several different paths.
 - Fit to the Dalitz plot is need for the correct CPV measurement.

Interference in $B^0 \rightarrow K^+K^-K_S^0$ Final State

- $B^0 \rightarrow K^+ K^- K_s^0$ final state has several different paths.
 - Fit to the Dalitz plot is need for the correct CPV measurement.

$B^0 \rightarrow K_S^0 K^+ K^-$ Reconstruction

of reconstructed events

– Estimation by unbinned-maximumlikelihood fit to the ΔE - M_{bc} distribution

• $B^0 \rightarrow K_S^0 K^+ K^-$ signal = 1176 ± 51

Reconstruction efficiency ~16%

Background

- **Continuum ~ 47%**
- Other B decays ~ 3%
- Signal purity ~ 50%

CP Violation Measurement in $B^0 \rightarrow K_s^0 K^+ K^-$

- The (φ₁, A) are determined by an unbinned-ML fit onto the time-dependent Dalitz distribution.
 - The signal probability density function:

 $P_{\text{sig}}(\Delta t, q; s_+, s_-) = \frac{e^{-|\Delta t|/\tau_B}}{4\tau_B} \left[\left(\left| \mathcal{A} \right|^2 + \left| \overline{\mathcal{A}} \right|^2 \right) - q \left(\left| \mathcal{A} \right|^2 - \left| \overline{\mathcal{A}} \right|^2 \right) \cos \Delta m_d \Delta t + 2q \mathcal{I} m \left(\overline{\mathcal{A}} \mathcal{A}^* \right) \sin \Delta m_d \Delta t \right]$

Four parameter convergences from the fit

	Solution $#1$	Solution $#2$	Solution $#3$	Solution #4
$\mathcal{A}_{CP}(f_0(980)K_S^0)$	$-0.30\pm0.29\pm0.11\pm0.09$	$-0.20\pm0.15\pm0.08\pm0.05$	$+0.02\pm0.21\pm0.09\pm0.09$	$-0.18\pm0.14\pm0.08\pm0.06$
$\phi_1^{\rm eff}(f_0(980)K_S^0)$	$(31.3\pm9.0\pm3.4\pm4.0)^\circ$	$(26.1 \pm 7.0 \pm 2.4 \pm 2.5)^{\circ}$	$(25.6\pm7.6\pm2.9\pm0.8)^\circ$	$(26.3 \pm 5.7 \pm 2.4 \pm 5.8)^{\circ}$
$\mathcal{A}_{CP}(\phi(1020)K_S^0)$	$+0.04\pm0.20\pm0.10\pm0.02$	$+0.08\pm0.18\pm0.10\pm0.03$	$-0.01\pm0.20\pm0.11\pm0.02$	$+0.21\pm0.18\pm0.11\pm0.05$
$\phi_1^{\rm eff}(\phi(1020)K_S^0)$	$(32.2\pm9.0\pm2.6\pm1.4)^\circ$	$(26.2\pm8.8\pm2.7\pm1.2)^\circ$	$(27.3\pm 8.6\pm 2.8\pm 1.3)^\circ$	$(24.3\pm 8.0\pm 2.9\pm 5.2)^\circ$
$\Delta(\ln \mathcal{L})$	-1.568	0	-2.956	-5.155

- They are statistically consistent with each other.
- Which is the most preferable solution?

CP Violation Measurement in $B^0 \rightarrow K_s^0 K^+ K^-$

Solution #1 is most preferred from an external information. Parameter Solution 1 Solution 2 Solution 3

Intermediate state-by-state fraction

Parameter	Solution 1	Solution 2	Solution 3	Solution 4
$f_{f_0 K_S^0}$	26.0 ± 7.4	54.0 ± 9.6	26.4 ± 7.8	68.1 ± 12.3
$f_{\phi K_S^0}$	14.2 ± 1.2	14.5 ± 1.2	14.2 ± 1.2	14.4 ± 1.2
$f_{f_{\mathrm{X}}K_{S}^{0}}$	5.10 ± 1.39	5.89 ± 1.86	39.6 ± 2.6	59.0 ± 3.0
$f_{\chi_{c0}K_S^0}$	3.73 ± 0.74	3.71 ± 0.73	3.68 ± 0.73	4.15 ± 0.79
$f_{(K^+K^-)_{\rm NR}K^0_S}$	138.4 ± 44.8	175.0 ± 52.6	157.4 ± 29.5	48.1 ± 11.7
$f_{(K_{S}^{0}K^{+})_{NR}K^{-}}$	1.65 ± 4.17	21.0 ± 17.3	4.63 ± 6.76	7.87 ± 4.78
$f_{(K^0_S K^-)_{\rm NR} K^+}$	26.0 ± 12.9	78.0 ± 36.2	38.6 ± 18.1	6.27 ± 3.81
$F_{ m tot}$	215.2 ± 47.5	352.0 ± 66.8	284.5 ± 36.3	207.9 ± 18.4

- The $Br(f_0(980) \rightarrow \pi^+\pi^-)/Br(f_0(980) \rightarrow K^+K^-)$ favors solutions with low $f_0(980)K_s^0$ fraction, when compared to the PDG.
- The $Br(f_0(1500) \rightarrow \pi^+\pi^-)/Br(f_0(1500) \rightarrow K^+K^-)$ favors solutions with low $f_0(1500)K_s^0$ fraction, when compared to the PDG.

- Here, we assume f_X as $f_0(1500)$.

CP Violation Measurement in $B^0 \rightarrow K_s^0 K^+ K^-$

Belle preliminary The third error accounts for an uncertainty arises from Dalitz model.

"sin2 ϕ_1 " Measurement in $b \rightarrow c\overline{c}s$

Scientific motivations

- Test of Kobayashi-Maskawa theory. \rightarrow Nobel prize in 2008
- Check for a NP phase with very precise unitarity tests.

"Social motivations"

- *The* final conclusion to the sin2 ϕ_1 /sin2 β from the B-factories over this decade.
- Establishment of a firm foundation toward the short coming luminosity- frontier era.

$b \rightarrow c\overline{c}s$ Reconstruction

	Ϳ/ψΚ _δ ⁰	Ϳ/ψΚ ⁰	ψ(2 <i>S</i>)K _S ⁰	$\chi_{c1}K_S^0$	<i>N_{BB}</i> (x 10 ⁶)	
Signal yield ('10)	12727±115	10087±154	1981±46	943±33	772	
Purity ('10) [%]	97	63	93	89		
Signal yield ('06)	7484±87	6512±123	-	-	- 535	
Purity ('06) [%]	97	59	_	_		

We have more yields than the N_{BB} increase, for we have improved the track finding algorithm.

Status of "sin2 ϕ_1 " Measurement

- We will soon finalize the sin2 ϕ_1 in $b \rightarrow c\overline{cs}$ modes.
- Preliminarily expected statistical sensitivity

 $\sigma("\sin 2\phi_1") \approx 0.024, \quad \sigma(A_{CP}) \approx 0.016$

- Predicted by a signal-yield scale applied to the ICHEP2006 results.
- The statistical uncertainties are getting close to the systematic ones.

 $\begin{aligned} & \text{ICHEP2006} \\ & \textbf{J/\psiK^{0} events in 535 x 10^{6} B\overline{B} pairs} \\ & "\sin 2\phi_{1} " = +0.642 \pm 0.031 \pm 0.017 \\ & A_{CP} & = +0.018 \pm 0.021 \pm 0.014 \end{aligned}$

Summary

• Using the final Belle data sample (772 x $10^6 B\overline{B}$ pairs),

- we preliminarily determine direct CPV parameter in $B^+ \rightarrow J/\psi K^+$:

$$J/\psi K^{\pm}$$
 $A_{CP} = (-0.76 \pm 0.50 \pm 0.22)\%$

- we are finalizing the measurement of CPV in $b \rightarrow c\overline{cs}$ modes; preliminarily expected statistical sensitivities are: $\sigma("\sin 2\phi_1") \approx 0.024, \quad \sigma(A_{CP}) \approx 0.016$

• Using 657 x $10^6 B\overline{B}$ pairs,

- we preliminarily determine CPV parameters in $B^0 \rightarrow K_s^0 K^+ K^-$:

 $\phi K_{S}^{0} \qquad \phi_{1}^{\text{eff}} = (32.2 \pm 9.0 \pm 2.6 \pm 1.4)^{\circ} \quad A_{CP} = +0.04 \pm 0.20 \pm 0.10 \pm 0.02$ $f_{0}(980)K_{S}^{0} \quad \phi_{1}^{\text{eff}} = (31.3 \pm 9.0 \pm 3.4 \pm 4.0)^{\circ} \quad A_{CP} = -0.30 \pm 0.29 \pm 0.11 \pm 0.09$

Backup Slides

$B^+ \rightarrow J/\psi K^+$ Reconstruction

• $B^{\pm} \rightarrow J/\psi K^{\pm}$ event reconstruction: J/ψ

- J/ψ candidates are reconstructed from e^+e^- or $\mu^+\mu^-$ pairs.
 - (Tightly identified lepton) + (tightly or loosely identified lepton).

 $3.037 < M_{\rm uu} < 3.133 \, {\rm GeV}/c^2$

 $2.947 < M_{ee} < 3.133 \text{ GeV}/c^2$

CP Violation Measurement in $B^+ \rightarrow J/\psi K^+$

List of bin-by-bin CP violation and charge asymmetry

Bin #	A_{CP} (%)	$A_{CP}^{\mathrm{raw}}\left(\% ight)$	$A_{\varepsilon}^{K^{+}}(\%)$
1	+0.75	$+2.30\pm2.47$	$-1.55 \pm 0.35 \pm 0.26$
2	-1.91	-1.04 ± 1.49	$-0.86 \pm 0.24 \pm 0.22$
3	-2.23	-1.65 ± 1.47	$-0.58 \pm 0.23 \pm 0.21$
4	-0.36	$+0.16\pm1.46$	$-0.52 \pm 0.22 \pm 0.19$
5	-0.41	$+0.01\pm1.46$	$-0.42 \pm 0.21 \pm 0.18$
6	-2.52	-2.19 ± 1.42	$-0.33 \pm 0.20 \pm 0.18$
7	+1.05	$+1.04\pm1.41$	$+0.01 \pm 0.20 \pm 0.19$
8	-0.14	$+0.20\pm1.41$	$-0.35 \pm 0.22 \pm 0.23$
9	-0.23	-0.01 ± 1.57	$-0.22 \pm 0.24 \pm 0.24$
10	-0.63	-0.68 ± 2.61	$+0.05 \pm 0.27 \pm 0.24$
Total	-0.76	-0.33 ± 0.50	$-0.43 \pm 0.07 \pm 0.17$

$B^+ \rightarrow J/\psi K^+ CPV$ Systematic Uncertainty

List of the systematic-uncertainty sources

	Source	%
A_{CP}^{raw}	Peaking background	0.01
	ARGUS background	0.022
	$M_{\rm bc}$ bin width	0.001
	$(p_{\text{lab}}^{K}, \cos \theta_{\text{lab}}^{K})$ binning	0.022
$A_{\rm rec}^{D_s^+}$	$D_s^{\pm} \to \phi \pi^{\pm}$ statistics	0.17
	$M_{\phi\pi^+}$ bin width	0.004
	$M_{\phi\pi^+}$ mass window	0.015
	$\cos \theta_{\rm CMS}^{D_s^{\pm}}$ binning	0.02
	$\cos \theta_{ m lab}^{\pi^{\pm}}$ binning	0.07
	$p_{ m lab}^{\pi^{\pm}}$ binning	0.04
	No-entry bins	0.001
	$\phi \to K^+ K^-$ asymmetry	0.05
$A_{\rm rec}^{D^0}$	$D^0(\bar{D}^0) \to K^{\mp} \pi^{\pm}$ statistics	0.07
	$M_{K^-\pi^+}$ bin width	0.002
	$M_{K^-\pi^+}$ mass window	0.005
	$(p_{\text{lab}}^K, \cos \theta_{\text{lab}}^K)$ binning	0.039
	$A_{CP}^{D^0}$	0.01
	$A_{\rm FB}^{D_s^+} = A_{\rm FB}^{D^0}$ assumption	0.01
	Total	0.22

$B^0 \rightarrow K_S^0 K^+ K^-$ CPV Systematic Uncertainty

List of the systematic-uncertainty sources

for the solution #1

	$f_0(980)K_S^0$	$\phi(1020)K_{S}^{0}$	others	$f_0(980)K_S^0$	$\phi(1020)K_{S}^{0}$	others
Category		$\delta \phi_1^{ m eff}(^\circ)$			$\delta {\cal A}_{CP}$	
Vertex Reconstruction	1.3	1.2	1.1	0.046	0.080	0.024
Wrong tag fraction	0.2	0.2	0.2	0.004	0.006	0.003
Δt resolution function	1.9	1.9	1.5	0.018	0.011	0.010
Possible fit bias	2.2	0.9	0.4	0.067	0.008	0.026
Physics parameters	0.1	0.0	0.1	0.002	0.001	0.001
Background PDF	1.0	0.8	0.8	0.037	0.012	0.016
Signal fraction	0.2	0.4	0.3	0.013	0.006	0.004
Misreconstruction	0.1	0.0	0.0	0.000	0.000	0.001
Efficiency	0.2	0.2	0.1	0.011	0.004	0.005
Signal model	0.7	0.4	0.4	0.040	0.017	0.006
Tag-side interference	0.0	0.0	0.0	0.043	0.054	0.066
Total w/o Dalitz model	3.4	2.6	2.1	0.110	0.100	0.078
Dalitz model	4.0	1.4	2.5	0.089	0.019	0.032