Double Parton Scattering at the LHC – Characteristics and Estimates

Edmond L Berger

Argonne National Laboratory

ELB, C Jackson, G Shaughnessy, Phys Rev D 81, 014014 (2010) (arXiv:0911.5348 (hep-ph))

Outline

- 1. What is Double Parton Scattering (DPS)?
- 2. Aim: identify signature kinematic variables and characteristic concentrations in phase space that distinguish DPS events from the usual single parton scattering SPS events
- 3. Establish a methodology to measure the size of DPS
- 4. Once the cross section for DPS is established in a well defined process, here, $pp \rightarrow b\bar{b}jjX$, then one can calculate its contributions in other final states
- 5. Possibly important for background estimates in new physics searches
- 6. Conclusions

What is double parton scattering?

• Two hard collisions per pp interaction

- Does it exist as a discernable contribution?
- What are its characteristics, allowing its measurement?
- Heuristic cross section for $pp \to b\bar{b}j_1j_2X$, $d\sigma^{DPS}(pp \to b\bar{b}j_1j_2X) = \frac{d\sigma^{SPS}(pp \to b\bar{b}X)d\sigma^{SPS}(pp \to j_1j_2X)}{\sigma_{\text{eff}}}$

Several assumptions

$$d\sigma^{DPS}(pp \to b\bar{b}j_1j_2X) = \frac{d\sigma^{SPS}(pp \to b\bar{b}X)d\sigma^{SPS}(pp \to j_1j_2X)}{\sigma_{\text{eff}}}$$

- σ_{eff}
 - Given one hard-scatter, $\sigma_{\rm eff}$ measures the effective size of the core in which accompanying partons are confined
 - Bounded by the transverse size of a proton
 - Different for gg and qq subprocesses? Energy dependent?
- Factorization/independent hard scatters cannot be strictly true, certainly not if any parton x > 0.5
- Large dynamic range of LHC offers opportunity to explore this phenomenology; measure $\sigma_{\rm eff}$

$pp \rightarrow b\bar{b}jjX$ at the LHC

Bottom quark pair production plus two jets

- Large rate over a wide kinematic range
- *b* tagging provides a clean signal
- Relatively unambiguous which final objects to pair: b with \bar{b} and j with j

Calculation

- Generate DPS $4 \rightarrow 4$ events with Madgraph/Madevent
- Generate SPS $2 \rightarrow 4$ events with ALPGEN (faster)
- Look for kinematic distributions that show discrimination between DPS and SPS

Assume, for illustration, $\sigma_{\rm eff} = 12$ mb; event rates quoted for $\sqrt{s} = 10$ TeV and 10 pb⁻¹ integrated luminosity

 $pp \rightarrow b\bar{b}jjX$ at the LHC

Double parton contributions

- At LO, the only contribution is: $(ij \rightarrow b\overline{b}) \otimes (kl \rightarrow jj)$
- \otimes : combine one event from $b \overline{b}$ and one from j j
- NLO effects modeled with

 $egin{array}{lll} bar{b}(j)\otimes jj &, \ bar{b}j\otimes (j)j &, \ bar{b}j\otimes j(j) \ bar{b}\otimes (j)jj &, \ bar{b}\otimes j(j)j &, \ bar{b}\otimes jj(j) \end{array}$

• (j) indicates j is undetected

Single parton contributions

- LO : $2 \rightarrow 4$ process $ij \rightarrow b\bar{b}jj$
- NLO modeled with contributions from the 5-jet final states: $b\bar{b}(j)jj$, $b\bar{b}j(j)j$, $b\bar{b}jj(j)$.

Simulation details

• Acceptance cuts

$$p_{T,j} \geq 25 \text{ GeV}, |\eta_j| \leq 2.5$$

 $p_{T,b} \geq 25 \text{ GeV}, |\eta_b| \leq 2.5$
 $\Delta R_{jj} \geq 0.4, \Delta R_{bb} \geq 0.4$

$$\Delta R_{ij} = \sqrt{(\eta_i - \eta_j)^2 + (\phi_i - \phi_j)^2}$$

Include detector resolution effects

$$\frac{\delta E}{E} = \frac{a}{\sqrt{E/\text{GeV}}} \oplus b,$$

a=50% and b=3% for jets

- Assume a *b*-tagging rate of 60% for *b*-quarks with $p_T > 20~{\rm GeV}$ and $|\eta_b| < 2.0$
- Hard scale choice

$$\mu^2 = \sum_{i} p_{T,i}^2 + m_i^2$$

$DPS \rightarrow uncorrelated (sub) events$

- Φ : angle between the planes defined by $b\overline{b}$ and jj systems
- Uncorrelated scatters: the DPS Φ distribution flat
- In SPS, $a + b \rightarrow b\bar{b}jjX$, many diagrams contribute; spin and kinematic correlations expected between the planes

Transverse momentum of leading jet

• p_T of the leading jet in $pp \rightarrow b\overline{b}jjX$, either a b or a light j

- DPS fills in the lower p_T region
- Sum does not allow us to establish a DPS signal; cross-over set by $\sigma_{\rm eff}$

Distinguishing Variables - $\Delta \phi_{jj}$ and S_{ϕ}

- Topology of DPS events includes two $2 \rightarrow 2$ hard scatters
 - Expect 2 pairs of jets to be individually roughly back-to-back (up to effects of extra real radiation)
 - $\rightarrow \Delta \phi_{jj} \sim \pi$ and $\Delta \phi_{b\bar{b}} \sim \pi$
- Even better is variable S_{ϕ} that combines this information from both $b\bar{b}$ and jj systems

$$S_{\phi} = \frac{1}{\sqrt{2}} \sqrt{\Delta\phi(b_1, b_2)^2 + \Delta\phi(j_1, j_2)^2}$$

D0 Collaboration, V. Abazov et al, Phys. Rev. D81, 052012 (2010) $p\bar{p} \to \gamma + 3jX \text{ at } \sqrt{s} = 1.96 \text{ TeV}$

Distinguishing Variables - S_{ϕ}

- DPS events are clustered near $S_\phi \sim \pi$, well separated from the total
- SPS events are fairly uniformly distributed

Distinguishing Variables - $p_T(j_1, j_2)$ and S'_{p_T}

- Topology of DPS events includes two $2 \rightarrow 2$ hard scatters
 - Expect 2 pairs of jets to be individually roughly back-to-back (up to effects of extra real radiation)
 - At LO for a 2 → 2 process, the vector sum of the transverse momenta of the final state pair is zero:
 p_T(b₁, b₂) ~ 0 and p_T(j₁, j₂) ~ 0
 NLO radiation and momentum mismods from the transverse moment spectrum.
 - NLO radiation and momentum mismeasurement smear the expected peak near zero
- Scaled variable $S_{p_T'}$ combines this information from both $b\bar{b}$ and jj systems

$$S'_{p_T} = \frac{1}{\sqrt{2}} \sqrt{\left(\frac{|p_T(b_1, b_2)|}{|p_T(b_1)| + |p_T(b_2)|}\right)^2 + \left(\frac{|p_T(j_1, j_2)|}{|p_T(j_1)| + |p_T(j_2)|}\right)^2}$$

D0 Collaboration, V. Abazov et al, Phys. Rev. D81, 052012 (2010)

Distinguishing Variables - S'_{p_T}

- DPS events produce a clear peak near $S_{p_T}' = 0$, well separated from the total
- SPS events are away from back-to-back (gluon splitting) Ed Berger, Argonne - p. 13/19

Two-dimensional distribution

Clear separation of DPS from SPS in the 2-D Φ and S'_{p_T} plane

Methodolgy/Strategy

Start with clean process $pp \rightarrow b\overline{b}jjX$

- Look at events in the 2-D Φ and S'_{p_T} plane
- Expect a concentration of events near $S_{p_T}' = 0$ that are distributed uniformly in the inter plane angle Φ . These are the DPS events
- Valley of low density between $S_{p_T}'\sim 0.1~{\rm and}~0.4~{\rm should}$ allow a cut that enhances DPS
- This enhanced DPS sample should show a more rapid drop of the cross section vs p_T of the leading jet
- Measure $\sigma_{
 m eff}$
- Examine other processes, e.g., $pp \rightarrow 4jetsX$; is the extracted σ_{eff} roughly the same?

Conclusions

- Developed the phenomenology of double scattering for $pp \to b \bar{b} j j X$ at LHC energies
- Identified distinct regions of phase space in which DPS should be relatively clean
- LHC operates in a different region of Bjorken *x* from the Tevatron: wider dynamic range provides opportunity to explore characteristics of DPS – factorization, process independence,
- Would be valuable to establish a DPS signal in early LHC runs and measure $\sigma_{\rm eff}$
- Once $\sigma_{\rm eff}$ is measured in a clean process, and dynamical features are established in a clean process (or two), then estimates can be made for possibly important backgrounds to Higgs and new physics processes

BACKUPS

-

Parton x values for DPS and SPS

- Distributions in the parton x values for DPS and SPS contributions to $pp \rightarrow b\bar{b}jjX$ at LHC
- DPS events tend to have small values of x (x < 0.2)
- Momentum fraction carried by the beam remnant is $1. x_1 x_2$ for DPS and 1. x in SPS: very similar

Past searches for DPS

- Good to have a process with a large rate and relatively clean signal
- Early searches focussed on 4 jet and γ plus jets

Table 1: DPS analyses by AFS, UA2, and CDF Collaborations.

Experiment	\sqrt{s} (GeV)	Final state	p_T^{min} (GeV)	η range	$\sigma_{ m eff}$
AFS (pp), 1986	63	4 jets	$p_{\mathrm{T}}^{\mathrm{jet}} > 4$	$ \eta^{ ext{jet}} < 1$	$\sim5{ m mb}$
UA2 ($par{p}$), 1991	630	4 jets	$p_{\mathrm{T}}^{\mathrm{jet}} > 15$	$ \eta^{ ext{jet}} < 2$	> 8.3 mb (95% C.L.)
CDF (pp), 1993	1800	4 jets	$p_{\mathrm{T}}^{\mathrm{jet}} > 25$	$ \eta^{ m jet} < 3.5$	$12.1^{+10.7}_{-5.4}$ mb
CDF ($par{p}$), 1997	1800	$\gamma+3{ m jets}$	$p_{\mathrm{T}}^{\mathrm{jet}} > 6$	$ \eta^{ m jet} < 3.5$	
			$p_{ ext{T}}^{ ilde{\gamma}} > 16$	$ \eta^{\gamma} < 0.9$	$14.5 \pm 1.7 {+1.7 \atop -2.3}$ mb

- Wide range of values of $\sigma_{
 m eff}$
- Recent study by D0 of $p\bar{p} \rightarrow \gamma + \text{jets} + X$ at $\sqrt{s} = 1.96 \text{ TeV}$ $\sigma_{\text{eff}}^{\text{ave}} = 16.4 \pm 0.3 \text{(stat)} \pm 2.3 \text{(syst)} \text{ mb}$

V. Abazov et al, Phys. Rev. D81, 052012 (2010)