

The International Design Study for the

K. Long, 23 July, 2010

on behalf of the IDS-NF collaboration

Acknowledgements:

- Many thanks to those who provided information or material:
 - And in particular the International Design Study for the Neutrino Factory (the IDS-NF) collaboration and the EUROnu collaboration

Neutrino Factory:

Neutrino oscillations, an established phenomenon

- → Neutrino mass is not zero and neutrinos mix
 - i.e. Standard Model is incomplete
- \rightarrow Either:
 - Majorana neutrino: a new state of matter; or
 - New physics:
 - To distinguish Dirac neutrino from Dirac anti-neutrino
- Phenomenological description:
 - Mixing of mass states \rightarrow flavour states
 - Potentially yields additional source of CP violation
- Observations:
 - Neutrino mixing pattern substantially different to that of the quarks
 - Neutrino masses are tiny

Why?

Standard neutrino Model (SvM):

• Phenomenological description:

$ \begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & c_{23} \\ 0 & -s_{2} \end{pmatrix} $	$ \begin{array}{c} 0 \\ s \\ s \\ s \\ c \\ $	C ₁₃ 0 0 1 ₃ e ^{-iδ} 0	s ₁₃ e ^{iδ} 0 c ₁₃	$ \begin{pmatrix} c_{12} & s_1 \\ -s_{12} & c_1 \\ 0 & 0 \end{pmatrix} $	$ \begin{array}{ccc} 2 & 0 \\ 2 & 0 \\ & 1 \end{array} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix} $
$\Delta m_{21}^2 = m_2^2 - m_1^2 > 0$					
$\Delta m_{31}^2 = m_3^2 - m_1^2$					
. 2 . 2					
$ \Delta m_{31} >> \Delta m_{21}^2$		R	ef. [1]	Ref. [2] (N	IINOS updated)
$\left \Delta m_{31}^2\right >> \Delta m_{21}^2$	parameter	Re best fit±1σ	ef. [1] 3σ interval	Ref. [2] (N best fit $\pm 1\sigma$	IINOS updated) 3σ interval
$ \Delta m_{31}^2 >> \Delta m_{21}^2$	parameter $\Delta m_{21}^2 [10^{-5} \text{eV}^2]$	Red best fit $\pm 1\sigma$ $7.65^{+0.23}_{-0.20}$	ef. [1] 3σ interval 7.05–8.34	Ref. [2] (N best fit $\pm 1\sigma$ $7.67^{+0.22}_{-0.21}$	IINOS updated) 3σ interval 7.07–8.34
$ \Delta m_{31}^2 >> \Delta m_{21}^2$	parameter $\Delta m_{21}^2 \left[10^{-5} \text{eV}^2 \right]$ $\Delta m^2 \left[10^{-3} \text{eV}^2 \right]$	Red best fit $\pm 1\sigma$ 7.65 ^{+0.23} _{-0.20} $\pm 2.40^{\pm 0.12}$	ef. [1] 3σ interval 7.05–8.34 +(2.07–2.75)	Ref. [2] (M best fit $\pm 1\sigma$ $7.67^{+0.22}_{-0.21}$ -2.39 ± 0.12	IINOS updated) 3σ interval 7.07–8.34 –(2.02–2.79)
$ \Delta m_{31}^2 >> \Delta m_{21}^2$	parameter $\Delta m_{21}^2 [10^{-5} \text{eV}^2]$ $\Delta m_{31}^2 [10^{-3} \text{eV}^2]$	Rest fit $\pm 1\sigma$ 7.65 ^{+0.23} _{-0.20} $\pm 2.40^{+0.12}_{-0.11}$	ef. [1] 3σ interval 7.05–8.34 ±(2.07–2.75)	Ref. [2] (M best fit $\pm 1\sigma$ 7.67 ^{+0.22} -2.39 ± 0.12 +2.49 ± 0.12	1INOS updated) 3σ interval 7.07–8.34 -(2.02–2.79) +(2.13–2.88)
Δ <i>m</i> ₃₁ >> Δ <i>m</i> ₂₁	parameter $\Delta m_{21}^2 \left[10^{-5} \text{eV}^2 \right]$ $\Delta m_{31}^2 \left[10^{-3} \text{eV}^2 \right]$ $\sin^2 \theta_{12}$	Rebest fit $\pm 1\sigma$ $7.65^{+0.23}_{-0.20}$ $\pm 2.40^{+0.12}_{-0.11}$ $0.304^{+0.022}_{-0.016}$	ef. [1] 3σ interval 7.05-8.34 $\pm (2.07-2.75)$ 0.25-0.37	Ref. [2] (N best fit $\pm 1\sigma$ 7.67 ^{+0.22} -2.39 \pm 0.12 +2.49 \pm 0.12 0.321 ^{+0.023} 0.321 ^{-0.022}	$\begin{array}{r} \text{IINOS updated)} \\ \hline 3\sigma \text{ interval} \\ \hline 7.07-8.34 \\ -(2.02-2.79) \\ +(2.13-2.88) \\ \hline 0.26-0.40 \end{array}$
Δ <i>m</i> ₃₁ >> Δ <i>m</i> ₂₁	parameter $\Delta m_{21}^2 \left[10^{-5} \text{eV}^2 \right]$ $\Delta m_{31}^2 \left[10^{-3} \text{eV}^2 \right]$ $\sin^2 \theta_{12}$ $\sin^2 \theta_{23}$	Rest fit $\pm 1\sigma$ $7.65^{+0.23}_{-0.20}$ $\pm 2.40^{+0.12}_{-0.11}$ $0.304^{+0.022}_{-0.016}$ $0.50^{+0.07}_{-0.06}$	ef. [1] 3σ interval 7.05-8.34 $\pm (2.07-2.75)$ 0.25-0.37 0.36-0.67	Ref. [2] (M best fit $\pm 1\sigma$ 7.67 ^{+0.22} -2.39 \pm 0.12 +2.49 \pm 0.12 0.321 ^{+0.023} 0.47 ^{+0.07} -0.06	$\begin{array}{r} \text{IINOS updated)} \\ 3\sigma \text{ interval} \\ \hline 7.07-8.34 \\ -(2.02-2.79) \\ +(2.13-2.88) \\ 0.26-0.40 \\ 0.33-0.64 \end{array}$

Schwetz, Tortola and Valle, arXiv:0808.2016

[2] Gonzalez-Garcia and Maltoni, arXiv:0704.1800

The experimentalists' contribution:

- Discovery:
 - Search for leptonic CP violation
 - Determine mass hierarchy
 - Investigate discrete symmetries
- Measure mixing parameters with a precision sufficient to:
 - Determine structure of theory:
 - Ultimate theory must unify quarks and leptons:
 - Quark and lepton mixing parameters must be related
- Therefore, seek to:
 - Determine neutrino-mixing parameters with a precision approaching that of the quark-mixing parameters

Precision-era facility must address:

- Mass hierarchy
- CP violation
- **θ**₁₃
- $\bullet \theta_{12}, \theta_{23}, \Delta m_{31}^2, \Delta m_{21}^2$
- More over:
 - Is θ₂₃ maximal?
 - Is θ₁₃ zero?
 - Beyond the SvM:
 - NSIs
 - MVNs
 - Sterile neutrinos

ISS reports:

۲

- Motivation; timescale and risk
- IDS-NF Neutrino Factory baseline
- Status of the study
 - Accelerator facility
 - Neutrino detectors: see A. Laing's talk in 'track 13'

Opportunities and conclusions

Related presentations:

A. Laing: 'Detectors for CP violation at the Neutrino Factory'. (track 13, Saturday 24Jul10, 12:20); Y. Karadzhov: 'Status of MICE, the international Muon Ionisation Cooling Experiment', poster; V.Verguilov: 'Measurement of emittance reduction in MICE', poster; M.Bonesini: 'The MICE particle identification system', poster.

Steps towards the **Neutrino Factory:**

Timescale and risk [of incremental approach]

Discovery of non-leading oscillations:

- Present, and near future, experiments that seek to measure θ₁₃:
 - Reactor: D-Chooz; Daya Bay; Reno
 - Long-baseline: T2K, NOvA

'Sensitivity plateau' of ~10⁻² reached around 2016

Potential/risk of incremental upgrade:

• Power upgrade to increase performance of T2K and NOvA:

- Upgraded facilities:
 - Some sensitivity to MH and δ :
 - Over 25—30% of (δ)parameter space:
 - So long as sin^220_{13} larger than ~10^{-2}
 - 70—75% of (δ)parameter space uncovered (sin²2θ₁₃ > ~ 10⁻²)
 - No δ-sensitivity for sin²2 θ_{13} smaller than ~10⁻²
- Opportunity:
 - Establish facility with discovery potential over close to the full parameter space and down to very small $sin^2 2\theta_{13}$:
 - With, in addition, the best possible:
 - Precision on the SvM parameters
 - Flexibility in the study of physics beyond the SvM

Risk avoidance: the Neutrino Factory:
Optimise discovery potential for CP and MH – Requirements:

- Large v_e (\overline{v}_e) flux
 - Detailed study of sub-leading effects

- (Large) high-energy v_e (v_e) flux
 - Optimise event rate at fixed L/E
 - Optimise MH sensitivity
 - Optimise CP sensitivity

Neutrino Factory:

IDS-NF baseline; performance and optimisation

IDS-NF baseline: accelerator:

IDS-NF-002: https://www.ids-nf.org/wiki/FrontPage/Documentation?action=AttachFile&do=view&target=IDS-NF-002-v1.1.pdf

A. Cervera, <u>*A. Laing*</u>, J. Martín-Albo, F.J.P. Soler

IDS-NF baseline: detector:

• Baseline:

Magnetised Iron Neutrino Detector (MIND):

- Large (100 kTonne) mass
- Readily magnetised
- New analysis gives threshold at 1—2GeV
- Alternatives:
 - Totally Active Scintillator Detector (TASD); Liquid Argon (LAr):
 - Potential for 'direct' sensitivity to ν_e and ν_τ
 - Issues:
 - Magnetisation of large volume
 - Cost of large mass of TASD
 - R&D required for large mass LAr

Neutrino Factory: optimisation:

• Two detectors:

Compare performance of 50 kT detector at magic baseline with two 25 kT detectors

All performance indicators 12000 Core crossing 10000 8000 Magic baseline -2 [km] 6000 4000 2000 GL oBES 2008 2000 4000 8000 6000 10000 12000 L₁ [km]

Kopp, Ota, Winter, Phys.Rev.D78:053007,2008.

- Preferred combination:
 - 2000—5000 km; good sensitivity to CP violation
 - -7000-8000 km; mass hierarchy, θ_{13} , degeneracy resolution

IDS-NF baseline performance:

IDS-NF baseline: per<u>formance</u>:

- Physics beyond the SvM:
 - Example: on-standard interactions
 - Excellent performance for *E*_u = 25 GeV (IDS-NF baseline)

IDS-NF baseline: precision; large θ_{13} :

- Precision measurement of mixing parameters:
 - θ_{13} measurement at < 1° level and θ_{23} at ~2° level
 - δ measurement at 10–15% level
 - Requires understanding of v_{τ} component of signal

Neutrino Factory:

Accelerator facility:

[Neutrino Factory detectors: see A. Lang's talk in 'track 13'

J.S. Berg; IPAC; THXMH02

Parameter	Value	Comment
Beam power	4 MW	Production rate
Beam energy	5-15 GeV	Optimum pion production
Bunch length	2 ± 1 ns	Pion/muon capture

Proton driver:

IPAC10: THPD074, MOPEC049, WEPE098

• Challenges:

- High power; short proton bunch length at ~10 GeV
- IDS-NF approach:
 - Consider two 'generic' options:
 - LINAC:
 - Possible development option for SPL (CERN) or Project-X (FNAL)
 - Requires accumulator/compressor rings
 - Rings:
 - Development option for J-PARC or RAL or possible 'green-field' option
 - Requires bunch compression

Parameter	Value	Comment
Jet velocity	20 m/s	Reformation of jet
Field at i/p	20 T	Pion collection
Field at exit of capture	1.75 T	Pion focusing

Target/capture:

IPAC10: WEPE101, THPEC092

• Baseline:

- Mercury jet, tapered solenoid for pion capture:
 - 20 T tapering to 1.75 T in ~13 m
- Alternatives: [mitigation of technical risk]
 - Tungsten bars; tungsten-powder jet

Baseline target: proof of principal: MERIT: IPAC10: WEPE078

- 'Disruption length': 28 cm
- 'Refill' time: 14 ms
 - Corresponds to 70 Hz
- Hence:
 - Demonstrated operation at:
 - 115 kJ × 70 Hz = 8 MW

- 20 m/s liquid Hg jet in 15 T B field
- Exposed to CERN PS proton beam:
 - Beam pulse energy = 115 kJ
 - Reached 30 tera protons at 24 GeV

IPAC10: THPEC089, THPEC091

Alternatives: solid and powder jet:

- Solid target:
 - Lifetime limitation from beaminduced shock:
 - Investigated using rapid risetime (kicker) power supply and thin wire
 - Measurements imply:
 - 2 cm diameter tungsten rod will survive > 10 yrs

•

 Proceeding to measure vibration modes to determine stress and verify models

- Tungsten-powder jet:
 - (Jet) advantage:
 - Avoids issue of shock
 - (Solid) advantage:
 - Avoids issue of Hg handling
 - 'Bench-test' system under evaluation
 - Proof of principal system under consideration

- 1. Suction/Lift
- 2. Load Hopper
- 3. Pressurise Hopper
- 4. Powder Ejection and Observation

Parameter	Value	Comment
E-spread after P.R.	10%	Subsequent accel.
Freq. after P.R.	201.25 MHz	
Emittance at exit	7.4 mm rad	Subsequent accel.

Muon front-end:

IPAC10: WEPE050, WEPE051, WEPE068, WEPE074, WEPE076

Muon ionisation cooling experiment

- MICE: proof of principle:
 - Design, build, commission and operate a realistic section of cooling channel
 - Measure its performance in a variety of modes of operation and beam conditions
 - Results will allow Neutrino Factory complex to be optimised

Running for first Step well underway! See Y.Karadzhov, V.Verguilov, and M.Bonesini posters for details

	E _{fin} (GeV)	Comment
Pre-accel. Linac	0.9	Change in γ
RLAI	3.6	Switch-yard congestion
RLA II	12.6	Switch-yard congestion
FFAG	25.0	Large acceptance, use of RF

• Linac/RLAs:

IPAC10: WEPE060

– Superconducting linac:

- Large acceptance;
- Rapidly increase γ to increase effective lifetime

– Recirculating linacs (RLAs):

- Continue rapid acceleration
- More cost-effective use of RF

Muon acceleration:

Rapid acceleration!

- Fixed Field Alternating Gradient (FFAG) accelerator:
 - Large aperture magnets with fixed field:
 - Continued rapid acceleration
 - Improved cost-efficiency in use of RF
 - Injection/extraction challenging:
 - Development of appropriate schemes in progress

•

IPAC10: MOPEC043, MOPE085,WEPE057

Muon acceleration: proof of principal:

- EMMA; almost complete at Daresbury Lab.
 - Electron Model of Muon Acceleration
 - Aka:
 - Electron Model of Many Applications

- Installation complete;
- Commissioning of injector system and of associated diagnostics and EMMA ring has started!

Neutrino Factory:

Opportunity and conclusions:

Neutrino Factory: footprint:

Conclusions:

- The Neutrino Factory, the 'facility of choice':
 - Best discovery reach
 - Best precision:
 - But need to define agreed figure of merit
 - Best sensitivity to non-standard interactions
- The IDS-NF baseline established and, so far, robust
 - Alternatives to the baseline, addressing particular issues (e.g., Low Energy Neutrino Factory), are under discussion
- The IDS-NF collaboration:
 - Energetic and ambitious, working towards IDR 2010/11 and RDR 2012/13:
 - EUROnu: encompasses and coordinates European contributions
- Scientific imperative:
 - Make the Neutrino Factory an option for the field!