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Hard jets and background
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Hard jets
(pp collisions)

Hard jets + background
(AA collisions)

Can we ‘reconstruct’ the hard jets?
We apply the jet area/median method

(MC, Salam, arXiv:0707.1378)
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Hard jets and background
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Susceptibility (how much bkgd gets picked up) 

Resiliency (how much the original jet changes) 

How are the hard jets 
modified by the background?
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Hard jets and background
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hard jet background back-reaction

‘susceptibility’ ‘resiliency’

Modifications of the hard jet

pAA
t,jet = ppp

t,jet + ρAjet ± σρ

√
Ajet + ∆pBR

t

MC, Salam, arXiv:0707.1378
MC, Salam, Soyez, arXiv:0802.1188
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Goal
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Reconstruct the 
momentum the hard 

jet would have without 
the background: (subtracts background, 

fluctuations and back-reaction remain)

MC, Salam, arXiv:0707.1378

psub
µ,jet ≡ pµ,jet − ρAµ,jet

Quality measures

Offset

Dispersion σ∆pt ≡
√
〈∆p2

t 〉 − 〈∆pt〉2

Small offset and dispersion will indicate a good reconstruction

〈∆pt〉 ≡ 〈pAA,sub
t − ppp,sub

t 〉
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Background determination
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Proposal in 2007 paper (MC, Salam, arXiv:0707.1378) 

• either,  choose a region in rapidity-azimuth
   plane where the background is uniform

• calculate ρ (pt per unit area) as

• or, account for rapidity dependence of 
  background by fitting a quadratic function   
  to pt,jet/Areajet distribution

In order to subtract the background, one must first determine it

ρ≡median
[{

p jett
Area jet

}]

P t
i /

 A
i [

G
eV

]

yi

kt, R=0.4

Hydjet, dNch/dy = 1600
with 2 hard jets, pt ! 100 GeV

LHC, Pb Pb
"s = 5.5 TeV
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This way to account for 
rapidity dependence of background

 turns out to be insufficiently accurate 

Adapt the median method 
to a varying background⇒
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Ranges can now be fixed, or local (tied to a jet’s position)

Background determination: the ranges

730

Choose a range such that you expect the background to be 
uniform within it, place it where you need it.

Use median operation within each local range of interest

Global Strip(∆) Circular(∆) Doughnut(δ,∆)

jet

-ymax ymax

0

2π

0

2π

yjet−∆ yjet+∆

∆ ∆ δ

A range should be not too large (to avoid non-uniformity of background) nor too 
small (to have sufficient statistics for the median operation).

We find  Arearange ≥ 25R2  to be a reasonable lower limit
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The IRC safe jet algorithms
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kt

SR
dij = min(kti2,ktj2)ΔRij2/R2

hierarchical in rel pt

Catani et al ‘91
Ellis, Soper ‘93 NlnN

Cambridge/
Aachen

SR
dij = ΔRij

2/R2

hierarchical in angle

Dokshitzer et al ‘97
Wengler, Wobish ‘98 NlnN

anti-kt

SR
dij = min(kti-2,ktj-2)ΔRij

2/R2

gives perfectly conical hard jets

MC, Salam, Soyez ’08
(Delsart, Loch) N3/2

SISCone
Seedless iterative cone 

with split-merge
gives ‘economical’ jets

Salam, Soyez ‘07 N2lnN

All are available in FastJet, http://fastjet.fr

We call these algs ‘second-generation’ ones

(As well as many IRC unsafe ones)

http://fastjet.fr
http://fastjet.fr
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kt Cam/Aa

SISCone anti-kt

19
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Cover of EPJ C
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Cambridge/Aachen with filtering
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An example of a third-generation jet algorithm

Cluster with C/A and a given R

Undo the clustering of each jet down to subjets with radius xfiltR

Retain only the nfilt hardest subjets

Butterworth, Davison, Rubin, Salam, arXiv:0802.2470

Idea: filter out soft background, retain hard core
(for this work we’ll be using xfilt = 0.5, nfilt = 2)
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Background determination: the median
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ρ≡median
[{

p jett
Area jet

}]MC, Salam, arXiv:0707.1378

jet ∈ range

•Should be used only with algorithms like kt or Cambridge/Aachen (but the 
subtraction can then be performed on jets of any algorithm)

•Works on an event-by-event basis (this removes many fluctuations)

•One can also explicitly remove the hard(est) jet(s) before taking the median, 
to reduce a potential bias from the hard jets in the event
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The background
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ρ σ

Typical values (depend on model):

Hydjet v1.6 dNch/dη|η=0
ρ (GeV)

(y=0, 0-10%)
σ (GeV)

RHIC 658
(0-6%)

100 8

LHC 
5.5 TeV

1570
(0-10%)

310 21
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How do the different algorithms 
fare in jet reconstruction?

Offset

Dispersion σ∆pt ≡
√
〈∆p2

t 〉 − 〈∆pt〉2

〈∆pt〉 ≡ 〈pAA,sub
t − ppp,sub

t 〉
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Reconstruction efficiency
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A jet reconstructed in the full event is considered 
matched to a hard jet if the constituents common to both the 

hard and the full jet make up at least 50% of the transverse 
momentum of the constituents of the hard jet
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Δpt distributions in PbPb at LHC
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σΔpt ~ 18.4 GeV

<Δpt> ~ -3.0 GeV
σΔpt ~ 17.6 GeV
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Gaussianity of  Δpt
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Distributions of Δpt quite 
well described by a gaussian

Slight tendency to ‘fat tails’

kt

Cam/Aa
(filt)
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<Δpt>

18

!"
p

t#
 [

G
e

V
]

pt,hard [GeV]

RHIC, 0-10% central

|y|<1, R=0.4, unquenched

Doughnut(R,3R) range

kt
C/A

anti-kt
C/A(filt)

-5

-4

-3

-2

-1

 0

 1

 2

 3

 4

 10  15  20  25  30  35  40  45  50

(Results are fairly independent of pt)

The residual offset of kt and C/A can be 
interpreted as an effect of the back-reaction

anti-kt and C/A(filt) fare best
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Back-reaction
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Back-reaction loss
Back-reaction gain

42

Without 
background

With 
background

“How (much) a jet changes when immersed in a background”
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Back-reaction
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Anti-kt jets are much more resilient to changes 
from background immersion

MC, Salam, Soyez, arXiv:0802.1188



Matteo Cacciari - LPTHE ICHEP - July 22, 2010

Back-reaction contribution to <Δpt>
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<Δpt> Back-reaction

Back-reaction explains the residual offset, with the exception of C/A(filt) 
(accidental compensation of back-reaction and positive offset)
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Dispersion of Δpt
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• C/A(filt) markedly better, as a consequence of its smaller effective area

• Dispersions increase at large pt, probably as a consequence of a larger 
dispersion of back-reaction

• anti-kt remains fairly constant (‘resiliency’), and eventually becomes 
better at large pt
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Robustness
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Centrality
No significant changes in other classes or non-central events 

(dispersion of course decreases with decreasing background)

Quenching

Using PYQUEN and Q-PYTHIA we observe a degradation of the <Δpt> 
offset for C/A(filt) at large pt at the LHC (but still only a 2% effect at 500 GeV)

Note however that the results for quenching my depend significantly on the simulation used.



Matteo Cacciari - LPTHE ICHEP - July 22, 2010

Conclusions
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 Jet area/median method for background determination and 
subtraction successfully applied to heavy ion collisions at RHIC 
and LHC: high efficiency, small or almost zero <Δpt> offset

 Each different jet algorithm has characteristics which affect 
the subtraction in specific ways (e.g. back-reaction)

 Irreducible dispersions are left, and may of course play an 
important role in measurements like the inclusive cross section 
(fakes rate). Their size also depends on the algorithm used.

 anti-kt turns out to have the safest smallest offset, filtering 
algorithms have the smallest dispersion (but may be more 
affected by quenching)
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Extra material

25



Matteo Cacciari - LPTHE ICHEP - July 22, 2010

Caveats
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While jet clustering is a deterministic procedure (though one must still 
choose a jet definition), background subtraction is less well-determined

A number of not fully clear-cut choices must be made:

Where to estimate the background (i.e. which range)

How to estimate it (for instance, subtract hard jets?)

Which jet algorithm to use (privilege small bias or small dispersion?)

Making the “proper” choice is as much a matter of 
art (i.e. experience) as of science, 

and depends on what you want to do

Having many algorithms and techniques at one’s disposal 
will allow better tuning of procedure with aim
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Ranges
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the global range also performs fairly well here thanks to the limited rapidity coverage

<Δpt>

!"
p

t#
 [

G
e

V
]

pt,hard [GeV]

LHC, unquenched

|y|<2.4, R=0.4

anti-kt algorithm

Global
Global, 2 excl
Circ(3R), 2 excl
Doughnut(R,3R)
Strip(2R), 2 excl
Strip(3R), 2 excl

-2

 0

 2

 4

 6

 8

 40  60  100  200  500



Matteo Cacciari - LPTHE ICHEP - July 22, 2010

The IRC safe algorithms
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Speed Regularity UE Backreaction Hierarchical
substructure

kt ☺☺☺ ☂ ☂☂ ☁☁ ☺☺

Cambridge
/Aachen

☺☺☺ ☂ ☂ ☁☁ ☺☺☺

anti-kt ☺☺☺ ☺☺ ☁/☺ ☺☺ ✘

SISCone ☺ ☁ ☺☺ ☁ ✘


