# Precision Kaon Physics with KLOE The KLOE collaboration



# The DA $\Phi$ NE $\phi$ -factory



### • $e^+e^-$ collider @ $\sqrt{s} = M_\phi = 1019.4$ MeV

- $\sigma_{\rm peak} \sim 3000 \ {\rm nb}$
- Separate e+e- rings to reduce beam-beam interaction
- 2 interaction regions
- Beams crossing angle  $\pi$  25 mrad
- Peak luminosity  $1.5 \times 10^{32}$  cm<sup>-2</sup>s<sup>-1</sup>

March 2006 end of data taking. Integrated luminosity: ~2.5 fb<sup>-1</sup> @  $\phi$ -peak and  $\sim 250 \text{ pb}^{-1}$  off-peak.

A  $\phi$ -factory offers the possibility to select pure kaon beams: neutral kaons from  $\phi \rightarrow K_{S} K_{L}$  are in fact produced in pairs and the detection of a  $K_{S}$  ( $K_{L}$ ) tags the



# The KLOE detector



#### presence of a $K_L$ ( $K_s$ ), the same holds for charged kaons.

### CKM unitarity and lepton-flavor violation



Precise determination of  $V_{us}$ Test of lepton universality Ke3 vs Kµ3 Most precise test of CKM unitarity  $|V_{ud}|^2 + |V_{us}|^2 = 1$ ;  $|V_{ub}|^2$  negligible  $G_F^2 = G_{CKM}^2 = (|V_{ud}|^2 + |V_{us}|^2) G_F^2$ Lepton-Quark universality of weak interaction.



SU(3) breaking [Ademollo-Gatto]

Precise determination of  $V_{us}/V_{ud}$ Test of Physics beyond the SM: right-handed contributions to charged weak currents charged Higgs exchange (2 Higgs doublet scenarios) Lepton Flavor Violation test with  $R_{\kappa} = \Gamma(Ke2) / \Gamma(K\mu2)$ 

10<sup>b</sup>

105

10<sup>4</sup>

10<sup>3</sup>

 $10^{2}$ 

10

#### Helicity suppressed: Sensitivity to NP enhanced

# $R_{K}$ precision measurement

•  $RK = \Gamma(Ke2(\gamma IB)) / \Gamma(K\mu2(\gamma IB))$  inclusive of IB only • DE (or SD)≈ IB presently known with 15% accuracy

To achieve  $\sim 1\%$  accuracy on R<sub>k</sub> improve knowledge of DE.

• In the SM  $R_{\kappa}$  has been calculated at 0.04% (no hadronic) uncertainties)

• Lepton Flavor Violation in the MSSM would enhance  $R_{\kappa}$  up to 1% LFV appears at 1-loop level via an effective H+ $\ell 
u_{ au}$ , Yukawa interaction dominated by  $e\nu_{\tau}$ .  $R_K^{LFV} \approx R_K^{SM} \left[ 1 + \left(\frac{m_K^4}{M_{H^{\pm}}^4}\right) \left(\frac{m_{\tau}^2}{m_e^2}\right) |\Delta_{13}|^2 \tan^6 \beta \right]$  $\Delta_{13}$  Lepton flavor violating coupling [Masiero-Paradisi-Petronzio PRD74 (2006) 011701]





The error on  $\tau_{\rm L}$  is the main limiting factor on V<sub>IIS</sub> accuracy from K<sub>L</sub> decays

JHEP 04 (2008)

 $\delta(V_{us}f_+(0))$ 

 $(V_{us}f_{+}(0))$ 



#### **ANALYSIS STRATEGY**

•Perform Direct search for Ke2 and Kµ2, no tag: gain  $\times$ 4 of statistics • Select 1-prong kinks in DC, K track from IP & secondary P > 180 MeV Signal events with  $E_{\gamma} < 10$  MeV (no explicit photon detection) • Exploit tracking of K and secondary: assuming  $m_{\nu} = 0$  get  $M^2_{lep}$  (S/B  $\sim 1/10$ ) Particle Identification by Neural Network based on EMC information.

#### Signal count from fit in NN- M<sup>2</sup><sub>len</sub>

Free parameters: normalization factors for Kµ2 and

Ke2( $\gamma$ ) including only IB with E<sub> $\gamma$ </sub><10 MeV

(to  $O(\alpha_{em})$ ) and resummation of leading logs)

Fixed parameter:

 $f_{DF} = 10.2\%$  (Ke2 contamination from

Ke2( $\gamma$ ) with E<sub> $\gamma$ </sub>>10 MeV)

But 0.5% systematics on  $R_{K}$  from  $f_{DE}$  ( $\delta(DE)/DE=15\%$ )  $\Rightarrow$  dedicated measurement of Ke2( $\gamma$ ) with E<sub> $\gamma$ </sub>>10 MeV

• 1-prong selection – NN > 0.98 – 1 photon cluster with E<sub>y</sub>>20 MeV in time with K

• Cluster times for photon and electron must be compatible With this selction we measure Ke2 $\gamma$  with:

#### • Data $\chi^2 = 113/112$ -NN — MC fit 2000 0.86 < NN < 1.02 1.2 MC bkg 0.8 -2000 $M_{lep}^2$ (MeV<sup>2</sup>) $M_{lep}^2$ (MeV<sup>2</sup>)

IB + SD

 $E_{\gamma}^{*}$  [MeV]

 $\nu_L$ 

25 50 75 100 125 150 175 200 225 25

### K<sub>s</sub> lifetime measurement

(18 million from '04 data)

beam line)

• Lifetime from fit to proper time  $t^*$  distribution of  $K_S \rightarrow \pi^+\pi^-$  decays

 $|V_{ud}|^2 = 0.9490(5)$ 

 $|V_{us}|^2 = 0.0506(4)$ 

 $\chi^2 = 2.3/1$  (13%)

 $= 0.1\% \oplus 0.2\% \oplus 0.1\% \oplus 0.1\%$ phase space BR radiative corr. integral  $\tau_{I}$  measurement can be improved (stat.+syst.) with whole KLOE data sample  $\mathsf{L}_{\gamma}^{2} = \mathsf{d}^{2} + \mathsf{L}_{\mathsf{KL}}^{2} - 2\mathsf{d}\mathsf{L}_{\mathsf{KL}}\mathsf{cos}\theta$ •  $K_L$  tagged with  $K_S \rightarrow \pi^+\pi^-$  vertex at IP  $ct_{\gamma} = L_{KL} / \beta_L + L_{\gamma}$ • K<sub>L</sub> direction and momentum from DC measurements • Unique to the KLOE calorimeter:  $L_{KL}$  and  $L_{\gamma}$  by time measurements  $t_{\gamma}$ x 10<sup>-2</sup> L=1.1 fb<sup>-1</sup> •  $K_{L}$  "photon" vertex, built with at least  $3\gamma$ 's from  $\pi^{0}\pi^{0}\pi^{0}$  decay  $\chi^{2}/dof = 50/54$ • Time scale, neutral vertex resolution,  $\gamma$  reconstruction efficiency fit range: 8 – 26 ns 5000 survived with  $K_L \rightarrow \pi^+ \pi^- \pi^0$  events 4000  $0.2887 \text{E-}01 \pm 0.3522 \text{E-}0$  $\Delta 
ho_{vtx}$  $20 \times 10^6$  events 20001.81% background  $K_{\rm r} \rightarrow \pi^0 \pi^0$  $\mathsf{K}_{\mathsf{L}} \rightarrow \pi^{\mathsf{f}} \pi^{\mathsf{f}} \pi^{\mathsf{o}}$ 5 10 15 20 30 35 -4 -2 0 2 4 6 8 10 CM t\* (ns)  $\tau_{\rm L} = (50.56 \pm 0.14_{\rm stat} \pm 0.21_{\rm syst})$  ns = 50.92(30) ns <u>PLB 626 (2005)</u> Whole data sample:  $\sigma_{
m stat} 
ightarrow 0.11$  ns = 50.72(36) ns PLB 632 (2006) Work in progress to reduce systematics

> • First measurement with pure K<sub>s</sub> beam and with an event by event knowledge of K<sub>s</sub> momentum KLOE

• is well suited to perform  $\tau_{s}$  measurement as a function of sidereal

 ${\sf E}\gamma^*>$ 10 MeV  $\cos\theta_{e\gamma}^{*} > 0.9$  $p_{e}^{*} > 200 \text{ MeV}$ The result obtained is:  $\frac{\Gamma_{SD}(K_{e2\gamma})}{\Gamma(K_{\mu2(\gamma)})} = 1.484(66)_{st}(16)_{sy} \times 10^{-5}$ 

In agreement with ChPT O( $p^4$ ) prediction,  $1.447 \times 10^{-5}$  [Bijinens, Eker, Gasser '93] Systematic error on RK from SD = 0.2%.

Using the complete KLOE data set (2.2 fb<sup>-1</sup>) we obtain:



|     |                |                       | fixed)                                            |  |
|-----|----------------|-----------------------|---------------------------------------------------|--|
|     |                |                       | KLOE                                              |  |
|     |                |                       | $\Delta_{13} = 10$<br>$\Delta_{13} = 5 \ 10^{-4}$ |  |
| B   | = (2 493 + 0 ( | 132) 10 <sup>-5</sup> | Δ <sub>13</sub> = 10 <sup>-3</sup>                |  |
| 200 | 400            | 600                   | 800 1000                                          |  |
|     |                |                       | М <sub>н</sub> (GeV)                              |  |
|     |                |                       |                                                   |  |



time which is interesting to test QM, CPT and Lorentz invariance •  $V_{us}$  from K<sub>s</sub> with KLOE data (we measured BR(Kse3) at 1.3%, we can reach 0.5% on the whole data set)

