

The LHCb Upgrade

Marina Artuso (Syracuse University) on behalf of the LHCb collaboration

- □LHCb now
- □Upgrade motivation
- □New trigger and DAQ
- □A two-stage plan for LHCb detector upgrade
- **□**Conclusions

LHCb in 30 seconds (or less)

- to study beauty and charm decays at LHC, exploiting the high bo and co production cross section, spatial correlation between b and o, and long b decay distance because of the high boost
- A few important numbers:
 - Track acceptance 1.9<η<4.9</p>
 - σ_{bb} ≈ 300 µb at 3.5+3.5 TeV [see Passaleva & Stone talks]
 - Nominal luminosity 2x10³² cm²s⁻¹

LHCb Event Display

LHCb now

See contributions by Borghi [01], Powell[01], Stone [01], Van Herwijnen [01], Blanks[04], McNulty[04], Passaleva[05], Mancinelli [06], Belyaev [06], Bediaga [06], Haines [06] Raven[06], Adinolfi [13]

Upgrade goals

- We expect new physics to be seen at LHC (complementary information from ATLAS/CMS and LHCb), the next step is a characterization of new physics through virtual interference with W & Z in the b and c decays
- Thus we want a ≥ 10 increase in sensitivity through:
 - Increase nominal luminosity
 - Increase efficiency on b hadron trigger (x≈2)
- Planned in 2 phase matching LHC schedule: phase I (nominal \mathcal{L} =1x10³³cm²s⁻¹) and phase II (nominal \mathcal{L} =2x10³³cm²s⁻¹)

(Most of the talk focuses on phase I)

The high luminosity challenge

At $\mathcal{L}=2x10^{32}$ cm²s⁻¹ [nominal running conditions envisaged for the present detector] most crossings do not have an interaction and the mean number of interactions per crossing is 0.4.

□At \mathcal{L} =10³³ cm²s⁻¹ [phase I] the mean number of interactions per crossing is ≈2.3 & 15% of the crossings are empty □ At \mathcal{L} =2x10³³cm²s⁻¹ [phase II] the mean number of interactions per crossing is ≈ 4.6 and all the crossings have at least 1 interaction

The solution: software trigger

Concept:

we need to follow all the clues that will emerge in the next few years with a strategy flexible and highly selective \rightarrow software trigger exploiting detached vertex information early on Implementation:

Read out the detectors at 40 MHz and use all the relevant information to suppress background (minimum bias, but also not so interesting beauty and charm signals)

Goals:
□20 KHz on tape (now 2 KHz)
□10 ⁵ reduction factor on minimum bias
☐Trigger efficiency for interesting B hadronic decays 50 %

Electronics & DAQ for 40 MHz readout

- Zero-suppressed readout
- Fast optical link used
- Readout boards common to all subdetectors

LHCb detector evolution in Phase I

Upgrade schedule (matched to LHC)

- □ phase I: ≈2016 LHC shut-down
 - Novel pixel based vertex detector (VELOPIX)
 - New front end electronics
 - New trigger and data acquisition concept to achieve better efficiency for hadronic B decays
 - RICH photon detector replacement
 - New TT & IT tracking systems
- phase II:
 - new hadron ID system (torch) bases of precision time of flight
 - Better electromagnetic calorimeter segmentation
 - Change to tracking: IT & OT geometry

Challenges for the tracking system

occupancy

Radiation environment

Danger of thermal runaway
Si must be cooled down to -10°C°

The VELO PIXEL Detector System

Velopix Sensor Choices

- □ 3 options being pursued:
 - □Planar silicon n-in-p 150 μm thick (started studies of 150 μm thick p-in-n USC/CNM)
- □3D silicon under investigation (Glasgow/CNM)
- Diamond pCVD: advantages no thermal runaway, produced 1.43x1.43 cm² 750 μm thick sensors.
 - metallized with a large pad & measured collection distance using Sr⁹⁰ source
 - ☐ I sensor metallized with strips, test beam underway
 - □Will produce pixel devices in the fall

The VELOPIX ASIC

- ☐Starting point TIMEPIX (imaging ASIC developed by the MEDIPIX collaboration)
- \square Studied in the test beam gave excellent spatial resolution (≈5 μm at 8°) still including 2.3 μm track prediction error. Red curve is with non-linear charge weighting correction.
- □VELOPIX will be derived from TIMEPIX2 development (faster analog front end, simultaneous TOT & time of arrival measurement, faster output data rates)

Unique to VELOPIX: clustering of the sparsified information, data formatting and buffering, additional multi-Gbit output links for 40 MHz readout

RICH Upgrade Phase I

Discrete components prototype: performances

- Photon detector candidate MaPMT R7600 from Hamamatsu
- Performance studies under way (pulse shape, timing)
- New 40 MHz readout under development

A new hadron ID device: the TORCH

Performance goals and

requirements

Requirement: time resolution per photon 50 ps, not unreasonable, see work by P. Krizan Pos (PD07)021

Calorimeter & Muon system

- Currently trigger processor read out at 40 MHz
- Modifications to electronics needed:
 - Upgraded FE boards to read out all the detector information at 40 MHz

Conclusion

- LHCb has a well developed plan and timeline for a staged upgrade (first step in ≈2016)
- The upgrade strategy is SLHc independent
- We are poised for a long and exciting physics program
- NEW
 COLLABORATORS
 ARE WELCOME!

Upgraded Sensitivities (50 fb⁻¹)

Observable	Sensitivity
$CPV(B_s \rightarrow \phi \phi)$	0.024
$CPV(B_d \rightarrow \phi K_s)$	0.027-0.064
$CPV(B_s \rightarrow J/\psi \phi) (2\beta_s)$	0.004
$CPV(B_d \rightarrow J/\psi K_s) (2\beta)$	0.004-0.014
$CPV(B \rightarrow DK) (\gamma)$	<1.4°
$CPV(B_s \rightarrow D_s K) (\gamma)$	1.4-2.8°
$\mathcal{E}(B_s{\to}\mu^+\mu^-)$	~15% of SM
$A_{FB}(B \rightarrow K^* \mu^+ \mu^-)$	Zero to ±0.1 GeV ²
$σ(sin2ψ)(B_s \rightarrow φγ)$	0.03
Charm mixing x'2	3x10 ⁻⁵
Charm mixing y'	4x10 ⁻⁴
Charm CP y _{CP}	2x10 ⁻⁴