Are scalar mesons visible in B[±] $\rightarrow \pi^{+} \pi^{-} \pi^{\pm}$ decays ?

Collaboration :

J.-P. Dedonder¹, A. Furman², R. Kamiński³, L. Leśniak³

and **B. Loiseau¹**

¹ LPNHE, Groupe Théorie (Paris, France)

² ul. Bronowicka 85 (Kraków, Poland)

³ H. Niewodniczański Institute of Nuclear Physics PAN (Kraków, Poland)

Motivation

- 1. study of rare B meson decays into three pions,
- 2. search for direct CP violation,
- 3. partial wave analysis of the decay amplitudes,
- 4. constraints on final state interaction amplitudes,
- 5. investigation of the Dalitz diagrams,
- 6. description of the data,
- 7. application in meson spectroscopy.

Decay amplitudes

Rare weak decays: $b \rightarrow u \,\overline{u} d$ and $b \rightarrow d \,\overline{d} d$.

The theoretical model is based on:

- 1. application of QCD factorization in quasi-two body approach for a limited range of the effective $\pi^+\pi^$ masses less than 1.7 GeV,
- 2. description of the final state $\pi^+\pi^-$ interactions in terms of the scalar and vector pion form factors ,
- 3. introduction of unitary constraints in the S-wave coupled channel approach with the $\pi^+\pi^-$ coupling to $K^+ K^-$, $K^0 \overline{K}^0$ and 4π (effective $\sigma\sigma$) states.

S wave amplitude in $B^- \rightarrow \pi_1^- \pi_2^+ \pi_3^-$

$$A_{S} = \frac{1}{\sqrt{3}} G_{F} \chi f_{\pi} (M_{B}^{2} - m_{23}^{2}) F_{0}^{B^{-} \to (\pi^{+}\pi^{-})_{S}} (m_{\pi}^{2}) U \Gamma_{1}^{n^{*}} (m_{23})$$
$$+ \frac{1}{\sqrt{3}} G_{F} \frac{B_{0}}{m_{b} - m_{d}} (M_{B}^{2} - m_{\pi}^{2}) F_{0}^{B\pi} (m_{23}) v \Gamma_{1}^{n^{*}} (m_{23})$$

$$U = \Lambda_{u}[a_{1} + a_{4}^{u} + a_{10}^{u} - (a_{6}^{u} + a_{8}^{u})r)] + \Lambda_{c}[a_{4}^{c} + a_{10}^{c} - (a_{6}^{c} + a_{8}^{c})r)]$$

$$v = \Lambda_{u}(-2a_{6}^{u} + a_{8}^{u}) + \Lambda_{c}(-2a_{6}^{c} + a_{8}^{c}), \quad B_{0} = m_{\pi}^{2}/(m_{u} + m_{d})$$

$$r = \frac{2B_{0}}{(m_{b} + m_{u})}; \quad \Lambda_{u} = V_{ub}V_{ud}^{*}, \quad \Lambda_{c} = V_{cb}V_{cd}^{*}, \quad \chi \text{-fit parameter}$$

 $\Gamma_1^{n}(\mathbf{m}_{23})$ is the non-strange scalar pion form factor.

P wave amplitude in $B^- \rightarrow \pi_1^- \pi_2^+ \pi_3^-$

$$A_{P} = 2\sqrt{2}\vec{p}_{1} \cdot \vec{p}_{2}G_{F}\left[\frac{f_{\pi}}{f_{\rho}}A_{0}^{B\rho}(m_{\pi}^{2})U + F_{1}^{B\pi}(m_{23})W\right]F_{1}^{\pi^{+}\pi^{-}}(m_{23})$$

 $A^{B
ho}$ and $F_1^{B\pi}$ are the transition form factors. $F_1^{\pi^+\pi^-}(m_{23})$ is the vector pion form factor. \vec{p}_1, \vec{p}_2 are the π_1, π_2 pion momenta in the $(\pi_2\pi_3)$ c.m. frame.

$$W = \Lambda_u [a_2 - a_4^u + \frac{3}{2}(a_7 + a_9) + \frac{1}{2}a_{10}^u] + \Lambda_c [-a_4^c + \frac{3}{2}(a_7 + a_9) + \frac{1}{2}a_{10}^c]$$

Non-strange scalar form factors

$$\langle 0 | \overline{n}n | \pi\pi \rangle = \sqrt{2}B_0\Gamma_1^n(E) \qquad \overline{n}n = \frac{1}{\sqrt{2}}(\overline{u}u + \overline{d}d)$$

$$\langle 0 | \overline{n}n | \overline{K}K \rangle = \sqrt{2}B_0\Gamma_2^n(E) \qquad E \equiv m_{\pi\pi} \equiv m_{K\overline{K}}$$

$$3 \text{ coupled channels: } \pi\pi, \overline{K}K, 4\pi(\sigma\sigma)$$

$$\overline{\Gamma}^* = R + TGR \quad R: \text{ production functions, } T: \text{ scattering amplitudes}$$

$$\Gamma_1^{n^*}(E) = R_1^n(E) + \sum_{j=1}^3 R_j^n(E) \int \frac{d^3p}{(2\pi)^3} T_{j1}(E, p, k_1) G_j(E, p) f_j(p, k_j)$$

$$G_j(E, p) = (E - 2\sqrt{p^2 + m_j^2} + i\varepsilon)^{-1}, \qquad f_j(p, k_j) = \frac{k_j^2 + \beta^2}{p^2 + \beta^2}, \quad \beta \text{ - parameter (fit)}$$

Multichannel model of the coupled amplitudes T is constrained by the data on pion-pion, kaon-antikaon and four pion production.

Chiral symmetry constraints

Low energy constraints on the scalar form factors:

$$\Gamma_{1,2}^n \approx a_{1,2}^n + b_{1,2}^n E^2, \quad \Gamma_3^n \approx 0, \qquad E \to 0.$$

Parameters a and b are calculated using the chiral model of Meissner and Oller (Nucl. Phys. A 679 (2001) 671) and the results of lattice QCD (from RBC and UKQCD Collaboration, Phys. Rev. D 78 (2008) 114509). Parametrization of the **production functions**:

$$R_{j}(E) = \frac{\alpha_{j} + \tau_{j} E + \omega_{j} E^{2}}{1 + cE^{4}}, \quad j = 1, 2, 3$$

The fitted parameter c controls the high energy behaviour of R_i.

Analytical expressions for Γ 's are obtained if separable potentials are used to describe the meson amplitudes T.

Unitarity conditions

$$\operatorname{Im} \Gamma_{i}^{*}(E) = \sum_{j=1}^{3} T_{ji}^{*}(E) r_{j} \Gamma_{j}^{*}(E) \theta(E - 2m_{j}), \quad i = 1, 2, 3$$
$$r_{j} = -\frac{k_{j}E}{8\pi}, \quad k_{j} - \text{channel momenta, } E - \text{energy}$$

Unitarity relations for the amplitudes :

Im
$$T_{ik}(E) = \sum_{j=1}^{3} T_{jk}^{*}(E) r_{j} T_{ij}(E) \theta(E - 2m_{j}), \quad i, k = 1, 2, 3$$

Vector pion form factor

The vector pion form factor $F_1^{\pi\pi}$:

$$\langle \pi^+(p_2)\pi^-(p_3) | \overline{u}\gamma_\mu u | 0 \rangle = (p_2 - p_3)_\mu F_1^{\pi^+\pi^-}(m_{23})$$

Contributions from 3 vector mesons V:

 $[\,\rho,\,\rho',\,\rho'']=[\rho(770),\,\rho(1450),\,\rho(1700)].$

$$F_1^{\pi^+\pi^-} = F_\rho + F_{\rho'} + F_{\rho''}$$

The components F_V are taken from the phenomenological model of Fujikawa et al. (Belle Collaboration, Phys. Rev. D78 (2008) 072006), used to describe the highstatistics data of the $\tau^- \rightarrow \pi^- \pi^0 \nu_{\tau}$.

Comparison with the BaBar data: effective $\pi^+\pi^-$ mass distributions

Data from BaBar Collaboration: Phys. Rev. D 79 (2009) 072006

$\pi^+\pi^-$ effective mass distributions for B+ decays

$\pi^+\pi^-$ effective mass distributions for B⁻ decays

Conclusions

- 1. Preliminary analysis of the $B^{\pm} \rightarrow \pi^{+}\pi^{-}\pi^{\pm}$ decays has been performed in the QCD factorization framework.
- 2. Final state $\pi^*\pi^-$ interactions have been described using the **non-strange scalar form** factor for the S wave and the vector pion form factor for the P wave.
- 3. A good agreement of the three-body model with the Babar data is obtained.
- 4. The π⁺π⁻ spectrum is dominated by the ρ(770) but the scalar resonance f₀ (600) (or σ) is visible as it leads to a threshold enhancement and to a strong interference with the ρ for the positive as well as for the negative values of cos θ.
- 5. Unified description of **three scalar resonances** in terms of **one** function (the **scalar pion form factor**) is achieved.
- 6. The **f**₀ (980) is not observed as a peak in the effective mass distribution since the pion scalar form factor has a **dip** near 1 GeV.
- 7. New experimental analyses of data with **better statistics** are welcome. The data already **exist!** One expects results from the Belle Collaboration and from future super B factories.

Scalar pion form factor

Physical observables in $B^- \rightarrow \pi_1^- \pi_2^+ \pi_3^-$

1. Double effective mass and helicity angle branching fraction:

$$\frac{dBr}{dm_{23}d\cos\theta_{12}} = PH |A|^2; \quad PH = \frac{m_{23} |\vec{p}_1| |\vec{p}_2|}{8(2\pi)^3 M_B^3 \Gamma_{B^-}}$$

$$A = \frac{1}{\sqrt{2}} [A_{S}(m_{23}) + A_{P}(m_{23}) \cos \theta_{12} + \{1 \leftrightarrow 3\}]$$

$$\cos \theta_{12} = \frac{\vec{p}_{1} \cdot \vec{p}_{2}}{|\vec{p}_{1} \cdot \vec{p}_{2}|}$$

2. Effective mass m_{23} distributions 3. Helicity angle θ_{12} distributions

$\pi^+\pi^-$ effective mass distributions for cos θ<0

$\pi^+\pi^-$ effective mass distributions for cos θ>0

Some preliminary numerical results

Branching ratios in units 10⁻⁶

decay	Belle	BaBar	our model
$B^{\pm} \rightarrow (\rho^0 \rightarrow \pi^+ \pi^-) \pi^{\pm}$		8.1±0.16	7.9

Phenomenological parameters

 β =3 GeV

 $\chi = 17.8 \text{ GeV}^{-1}$

C= 19.0 GeV⁻⁴

 $N_{P} = 1.02$