Suppressed Decays of B_{s} Mesons

Olga Norniella
UIUC
On behalf of the CDF collaboration

ICHEP, July 22-28, 2010

Motivation

- Most of the B_{s} suppressed decays have not been observed yet

B^{0}

Only difference is the $\mathrm{V}_{c d}$ contribution vs the $\mathrm{V}_{\text {cs }}$

- All of these modes have the possibility of providing further information on lifetime difference and $C P$ asymmetries in B_{s} decays.
$\Rightarrow B_{s} \rightarrow J / \psi K_{S}$ is a CP eigenstate, measurement of the lifetime in this mode is a direct measurement of $\tau_{B s}$ (Heary)
$\Rightarrow B_{s} \rightarrow J / \psi K_{S}$ can be used to extract the angle γ of unitary triangle (R. Fleischer, Eur.Phys. J.C10:299-306,1999)
$\Rightarrow B_{s} \rightarrow J / \psi K^{*}$ contains an admixture of $C P$ final states, an angular 2 analysis can be done to extract $\sin \left(2 \beta_{s}\right)$ (complementary to $\left.B_{s} \rightarrow J / \psi \phi\right)$

B production at Tevatron

- Tevatron is a source of all B-hadron species: $B_{d}, B_{u}, B_{c}, B_{s}$ and Λ_{b} \Rightarrow At CDF the $\sigma_{\mathrm{b}}=29.4 \pm 0.6 \pm 6.2 \mu \mathrm{~b}(|n|<1)$

- Some of them are not produced at the B-factories
$\Rightarrow B_{s}, B_{c}, B^{\star *}, B_{s}^{* *}, \Lambda_{b}, \Sigma_{b}, \Xi_{b}, .$.
- More decays are accessible thanks to the amount of luminosity collected
\Rightarrow CDF has more than $7.5 \mathrm{fb}^{-1}$ on tape
- CDF has excellent mass resolution, vertex resolution and trigger system for flavor physics

Measurements

- Branching ratio measurement

- Analysis strategy
\Rightarrow Reconstruct $B \rightarrow J / \psi K^{\star}$ and $B \rightarrow J / \psi K_{s}$ from a large sample of di-muon ($\mathrm{J} / \psi \rightarrow \mu^{+} \mu^{-}$decays)
\Rightarrow Apply specific optimization cuts to remove backgrounds
\Rightarrow Likelihood fit to the invariant mass distribution to get the ratio of yields

Reconstruction

- Data from di-muon triggers
$\Rightarrow J / \psi$ triggers, mainly looking for:
- two low p_{T} muons : $\mathrm{p}_{\mathrm{T}}>1.5 \mathrm{GeV} / \mathrm{c}^{2}$
- two muons have opposite charge
- $\Delta \phi$ (between 2 muons) <120 degrees
- Reconstruction

5

$\mathrm{B} \rightarrow \mathrm{J} / \psi \mathrm{K}_{\mathrm{S}}$ Analysis

- Advantage: K_{s} has a long life ($c \tau \sim 2.5 \mathrm{~cm}$) and is a narrow resonance
\Rightarrow easy to get a pure K_{s} sample
- Disadvantage: expecting small B_{s} signal \Rightarrow important to suppress combinatorial
background contribution
o A Neural Network is used to discriminate between signal and combinatorial background
$\Rightarrow 22$ different kinematic variables $p_{T}, d 0, c \tau$, helicity angles, mass,..
\Rightarrow Trained using B_{s} MC for Signal and data sideband for BKG
\Rightarrow Optimization procedure geared
 towards maximizing efficiency $/(1.5+\sqrt{ } B)$

Fit contributions for $\mathrm{B} \rightarrow \mathrm{J} / \psi \mathrm{K}_{\mathrm{S}}$

o The invariant mass distribution is fitted with binned Likelihood

CDF Run II Preliminary, $5.9 \mathrm{fb}^{-1}$ $\mathrm{J} / \psi \mathrm{K}_{\mathrm{s}}$ mass $\left(\mathrm{GeV} / \mathrm{c}^{2}\right)$

3 Gaussian template extracted from B^{0} simulation

Use $m\left(B_{s}\right)-m\left(B^{0}\right)$ for extrapolation

Signal
B^{0} and B_{s} decays

Background

- Partial reconstruction multibody decays where π, K or γ missing
- Combinatorial background
- $\Lambda_{\mathrm{b}} \rightarrow J / \psi \Lambda$ contribution Negligible after specific cut

Exponential function

First observation of $B_{s} \rightarrow J / \psi K_{S}$!!!

$$
\frac{\operatorname{Br}\left(B_{s} \rightarrow J / \psi K_{s}\right)}{\operatorname{Br}\left(B^{0} \rightarrow J / \psi K_{s}\right)}=\frac{N\left(B_{s} \rightarrow J / \psi K_{s}\right)}{N\left(B^{0} \rightarrow J / \psi K_{s}\right)} \star \frac{f_{d}}{f_{s}} * A_{r e l}
$$

$N\left(B^{0}\right)=5954 \pm 79 ; N\left(B_{s}\right)=64 \pm 14 ; N\left(B_{s}\right) / N\left(B^{0}\right)=0.0108 \pm 0.0019$

- The p-value for B_{s} signal compared to the background hypothesis

$$
p \text {-value }=3.8510^{-13} \text { or } 7.2 \sigma
$$

$\mathrm{B} \rightarrow \mathrm{J} / \psi \mathrm{K}^{*}$ Analysis

oDisadvantage: K^{\star} is not a long-lived particle and is a wider resonance
\Rightarrow more background contributions to deal with
oAdvantage: expecting bigger B_{s} signal
\Rightarrow not necessary sophisticated tools to remove combinatorial background

- Rectangular cuts optimization to maximize efficiency/(1.5 + V B)
$\mathrm{p}_{\mathrm{T}}(\mathrm{B})>6 \mathrm{GeV} / \mathrm{c}$
Flight distance $L_{x y}(B)>300 \mu \mathrm{~m}$
Impact parameter $d_{x y}(B)<50 \mu m$
Fit vertex Probability $(B)>0.01$
$\mathrm{p}_{\mathrm{T}}\left(\mathrm{K}^{+}, \pi^{-}\right)>1.5 \mathrm{GeV} / \mathrm{c}$

Fit contributions for $\mathrm{B} \rightarrow \mathrm{J} / \psi \mathrm{K}^{*}$

- Same contributions than in the $B \rightarrow J / \psi K_{S}$ analysis plus additional backgrounds

> Signal B^{0} and B_{s} decays
> Background

- Partial reconstruction
- Combinatorial background
$B_{s} \rightarrow J / \psi \phi$ contribution
- $B_{s} \rightarrow J / \psi f^{0}$ contribution
last one is negligible
$\mathrm{J} / \psi \mathrm{K} \pi$ mass $\left(\mathrm{GeV} / \mathrm{c}^{2}\right)$
$B_{s} \rightarrow J / \psi \phi$ modeled by 2 Gaussians template
Extracted from simulation but contribution constrained using data

First observation of $B_{s} \rightarrow J / \psi K^{*}!!!$

$N\left(B^{0}\right)=9530 \pm 110 ; N\left(B_{s}\right)=151 \pm 25 ; N\left(B_{s}\right) / N\left(B^{0}\right)=0.0159 \pm 0.0022$

- The p-value for B_{s} signal compared to the background hypothesis

$$
p \text {-value }=8.910^{-16} \text { or } 8 \sigma
$$

Systematic uncertainties

Difference sources of systematic uncertainties have been considered

Sources	$B \rightarrow J / \psi K^{\star}$	$B \rightarrow J / \psi K_{S}$
Signal modeling	4.4%	4.6%
Mass difference $\left(B_{s}-B^{0}\right)$	$\sim 0.1 \%$	$\sim 0.1 \%$
Combinatorial background (different modeling)	1.25%	5.6%
Combinatorial background (fixing the contribution)	31%	5.6%
$B_{s} \rightarrow J / \psi \phi$	1.25%	-

$$
\begin{array}{ll}
\hline B \rightarrow J / \psi K^{\star} & N\left(B_{s}\right) / N\left(B^{0}\right)=0.0159 \pm 0.0022 \text { (stat.) } \pm 0.0050 \text { (sys.) } \\
\hline B \rightarrow J / \psi K_{s} & N\left(B_{s}\right) / N\left(B^{0}\right)=0.0108 \pm 0.0019 \text { (stat.) } \pm 0.0010 \text { (sys.) } \\
\hline
\end{array}
$$

Relative Acceptance Calculation

$$
\frac{\mathrm{Br}\left(\mathrm{~B}_{s} \rightarrow J / \psi h\right)}{\operatorname{Br}\left(\mathrm{B}^{0} \rightarrow J / \psi h\right)}=\frac{\mathrm{N}\left(\mathrm{~B}_{s} \rightarrow J / \psi h\right)}{\mathrm{N}\left(\mathrm{~B}^{0} \rightarrow J / \psi h\right)} * \frac{f_{d}}{f_{s}} * A_{\text {rel }}
$$

- Relative Acceptance evaluation using simulation

$$
A_{r e l}=\frac{N\left(B^{0} \rightarrow J / \psi K_{s} \text { passed }\right) / N\left(B^{0} \rightarrow J / \psi K_{s} \text { generated }\right)}{N\left(B_{s} \rightarrow J / \psi K_{s} \text { passed }\right) / N\left(B_{s} \rightarrow J / \psi K_{s} \text { generated }\right)}
$$

$B \rightarrow J / \psi K^{\star}$	$A_{\text {rel }}=1.057 \pm 0.010$ (stat) ± 0.263 (sys.)
$B \rightarrow J / \psi K_{S}$	$A_{\text {rel }}=1.012 \pm 0.010$ (stat) ± 0.042 (sys.)

o Systematic uncertainties

Source	$B \rightarrow J / \psi K^{\star}$	$B \rightarrow J / \psi K_{S}$
$c \tau$ in B^{0} and $B_{S} M C$	0.9%	2.8%
P_{T} Spectrum	2.7%	3%
polarization	24.6%	-

Recap of all numbers

$$
\frac{\operatorname{Br}\left(B_{s} \rightarrow J / \psi h\right)}{\operatorname{Br}\left(B^{0} \rightarrow J / \psi h\right)}=\frac{N\left(B_{s} \rightarrow J / \psi h\right)}{N\left(B^{0} \rightarrow J / \psi h\right)} * \frac{f_{d}}{f_{s}} * \quad A_{\text {rel }} \quad \text { where } h=k_{s} \text { or } K^{\star}
$$

$$
\Rightarrow N\left(B_{s} \rightarrow J / \psi h\right) / N\left(B^{0} \rightarrow J / \psi h\right):
$$

$B \rightarrow J / \psi K^{\star}$	0.0159 ± 0.0022 (stat.) ± 0.0050 (sys.)
$B \rightarrow J / \psi K_{S}$	0.0108 ± 0.0019 (stat.) ± 0.0010 (sys.)

$\Rightarrow f_{s} / f_{d}$ from CDF (Phys.Rev. D77, 072003 (2008)) combined with new PDG value for $\operatorname{Br}\left(D_{s} \rightarrow \phi \pi\right)$

$$
0.269 \pm 0.033
$$

$$
\begin{array}{ll}
\Rightarrow A_{\text {rel }}: & 1.057 \pm 0.010 \text { (stat) } \pm 0.263 \text { (sys) } \\
& 1.012 \pm 0.010 \text { (stat) } \pm 0.042 \text { (sys) }
\end{array}
$$

Branching Ratios Measurement

$$
\frac{\mathrm{Br}\left(\mathrm{~B}_{\mathrm{s}} \rightarrow \mathrm{~J} / \psi \mathrm{K}^{\star}\right)}{\mathrm{Br}\left(\mathrm{~B}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}^{\star}\right)}=0.062 \pm 0.009 \text { (stat.) } \pm 0.025 \text { (sys.) } \pm 0.008 \text { (frag.) }
$$

$$
\frac{\operatorname{Br}\left(B_{s} \rightarrow J / \psi K_{s}\right)}{\operatorname{Br}\left(B^{0} \rightarrow J / \psi K_{s}\right)}=0.041 \pm 0.007 \text { (stat.) } \pm 0.004 \text { (sys.) } \pm 0.005 \text { (frag.) }
$$

\Rightarrow Using PDG values: $\quad \operatorname{Br}\left(B^{0} \rightarrow J / \psi K^{*}\right)=(1.33 \pm 0.06) * 10^{-3}$

$$
\operatorname{Br}\left(B^{0} \rightarrow J / \psi K^{0}\right)=(8.71 \pm 0.32) * 10^{-4}
$$

$$
\begin{array}{|l|}
\hline \operatorname{Br}\left(B_{s} \rightarrow J / \psi K^{\star}\right)=(8.3 \pm 1.2 \text { (stat.) } \pm 3.3 \text { (sys.) } \pm 1.0 \text { (frag.) } \pm 0.4 \text { (PDG) })^{\star 10-5} \\
\operatorname{Br}\left(B_{s} \rightarrow J / \psi K^{0}\right)=(3.5 \pm 0.6 \text { (stat.) } \pm 0.4 \text { (sys.) } \pm 0.4 \text { (frag.) } \pm 0.1 \text { (PDG)) })^{\star 10^{-5}}
\end{array}
$$

Summary

- Two new Cabibbo and color suppressed decays of B_{s} mesons have been observed by CDF: $\mathrm{B}_{s} \rightarrow \mathrm{~J} / \psi \mathrm{K}^{*}$ and $\mathrm{B}_{s} \rightarrow \mathrm{~J} / \psi \mathrm{K}_{s}$
\Rightarrow significance greater than 7σ
- A preliminary measurement of their Branching Ratios relative to the B0 decays have been done

$$
\begin{aligned}
& \Rightarrow \text { For } k^{*}: 0.062 \pm 0.009 \text { (stat.) } \pm 0.025 \text { (sys.) } \pm 0.008 \text { (frag.) } \\
& \Rightarrow \text { For } k_{s}: 0.041 \pm 0.007 \text { (stat.) } \pm 0.004 \text { (sys.) } \pm 0.005 \text { (frag.) }
\end{aligned}
$$

- These modes are going to provide further information on lifetime difference and CP asymmetries in B_{s} decays
- CDF is collecting a lot of more events every hour...so stay tuned because more
 decays are coming soon

Back up

Signals and Background Contributions

Both analysis have some common Background contributions and signals
0 Signals (B^{0} and $B s$) templates are obtained from simulation ($B^{0} M C$)

$$
f_{B^{0}}=N_{B^{0}} \cdot\left(\frac{f_{1}}{\sigma_{1} \sqrt{2 \pi}} e^{-\left(x-\mu_{1}\right)^{2} / 2 \sigma_{1}^{2}}+\frac{f_{2}}{\sigma_{2} \sqrt{2 \pi}} e^{-\left(x-\mu_{2}\right)^{2} / 2 \sigma_{2}^{2}}+\frac{f_{3}}{\sigma_{3} \sqrt{2 \pi}} e^{\left.-\left(x-\mu_{3}\right)^{2} / 2 \sigma_{3}^{2}\right)}\right.
$$

The same template for B^{0} and $B s$ taking into account $\Delta m=86.8 \mathrm{MeV} / \mathrm{c}^{2}$

- Combinatorial background

$$
f_{c o m b}(x)=N_{0} \cdot e^{C_{0} x}
$$

Exponential function
(Float in the final fit)

- Partial reconstruction contribution for 5 bodies B^{0} decays

$$
f_{A R G U S}(x)=N_{1} \cdot \sqrt{1-\frac{x^{2}}{m_{0}^{2}}} \cdot e^{-C_{1} \frac{x^{2}}{m_{0}^{2}}}
$$

Argus function
m_{0} cut off ~ 5.14

More Backgrounds

$B \rightarrow J / \psi K^{*}$ analysis has more backgrounds that need to be modeled - Bs $\rightarrow J / \psi \phi$
\Rightarrow Templates are obtained from simulation: 2 Gaussians (Fixed in the final fit)
\Rightarrow Contribution constrained using $B s \rightarrow J / \psi \phi$ data sample

- Partial reconstruction contribution for 5 bodies Bs decays
\Rightarrow modeled with another ARGUS function
- m_{0} cut off at $5.22 \mathrm{GeV} / \mathrm{c} 2$: mass (Bs)-mass $\left(\pi^{0}\right)$
\Rightarrow exponential constant constrained to be identical to the previous one

Background studied but considered negligible contributions

- In $B \rightarrow J / \psi K^{*}$ analysis: $B \rightarrow J / \psi f_{0}$
- In $B \rightarrow J / \psi$ Ks analysis: $\Lambda_{b} \rightarrow J / \psi \Lambda$

