

Suppressed Decays of B_s Mesons

Olga Norniella UIUC On behalf of the CDF collaboration

ICHEP, July 22-28, 2010

o All of these modes have the possibility of providing further information on lifetime difference and CP asymmetries in B_s decays.

- $\Rightarrow B_s \rightarrow J/\psi K_s \text{ is a CP eigenstate, measurement of the lifetime in this mode is a direct measurement of <math>\tau_{Bs (Heavy)}$
- \Rightarrow B_s \rightarrow J/ ψ K_s can be used to extract the angle γ of unitary triangle (R. Fleischer, Eur.Phys. J.C10:299-306,1999)
- $\Rightarrow B_s \rightarrow J/\psi \text{ K* contains an admixture of CP final states, an angular}_2 analysis can be done to extract sin(2\beta_s) (complementary to B_s \rightarrow J/\psi\phi)$

o Tevatron is a source of all B-hadron species: B_d , B_u , B_c , B_s and Λ_b \Rightarrow At CDF the $\sigma_{\rm b}$ = 29.4 ±0.6 ±6.2 µb ($|\eta|$ < 1)

- o Some of them are not produced at the B-factories
 - \Rightarrow B_s, B_c, B^{**}, B_s^{**}, $\Lambda_{\rm b}$, $\Sigma_{\rm b}$, $\Xi_{\rm b}$,...

o More decays are accessible thanks to the amount of luminosity collected

 \Rightarrow CDF has more than 7.5 fb⁻¹ on tape

o CDF has excellent mass resolution, vertex resolution and trigger system for flavor physics

Measurements

o Branching ratio measurement

o Analysis strategy

 \Rightarrow Reconstruct B \rightarrow J/ ψ K* and B \rightarrow J/ ψ K_{S} from a large sample of di-muon

(J/ $\psi \rightarrow \mu^{+} \mu^{-}$ decays)

 \Rightarrow Apply specific optimization cuts to remove backgrounds

 \Rightarrow Likelihood fit to the invariant mass distribution to get the ratio of yields

Reconstruction

o Data from di-muon triggers

- \Rightarrow J/ ψ triggers , mainly looking for:
 - two low p_T muons : p_T >1.5 GeV/c²
 - two muons have opposite charge
 - $\Delta \phi$ (between 2 muons) <120 degrees

o Reconstruction

$B \rightarrow J/\psi K_S$ Analysis

o Advantage: K_s has a long life ($c\tau \sim 2.5 \text{ cm}$) and is a narrow resonance \Rightarrow easy to get a pure K_s sample o Disadvantage: expecting small B_s signal \Rightarrow important to suppress combinatorial background contribution

o A Neural Network is used to discriminate between signal and combinatorial background

- \Rightarrow 22 different kinematic variables p_T , d0, $c\tau$, helicity angles, mass,...
- \Rightarrow Trained using B_{s} MC for Signal and data sideband for BKG
- \Rightarrow Optimization procedure geared $\frac{9}{100}$ towards maximizing efficiency/(1.5 + $\sqrt{100}$

o The invariant mass distribution is fitted with binned Likelihood

 $N(B^{0}) = 5954 \pm 79$; $N(B_{s}) = 64 \pm 14$; $N(B_{s})/N(B^{0}) = 0.0108 \pm 0.0019$

o The p-value for B_s signal compared to the background hypothesis

p-value = $3.85 \ 10^{-13}$ or 7.2σ

$B \rightarrow J/\psi$ K* Analysis

oDisadvantage: K*is not a long-lived particle and is a wider resonance \Rightarrow more background contributions to deal with

oAdvantage: expecting bigger B_s signal

 \Rightarrow not necessary sophisticated tools to remove combinatorial background

o Rectangular cuts optimization to maximize efficiency/(1.5 + \sqrt{B})

 $p_T(B) > 6 \ GeV/c$ Flight distance $L_{xy}(B) > 300 \ \mu m$ Impact parameter $d_{xy}(B) < 50 \ \mu m$ Fit vertex Probability (B) >0.01 $p_T(K^+, \pi^-) > 1.5 \ GeV/c$

o Same contributions than in the $B{\rightarrow}J/\psi$ K_s analysis plus additional backgrounds

o The p-value for B_s signal compared to the background hypothesis

p-value = 8.9 10⁻¹⁶ or 8σ

Systematic uncertainties

Difference sources of systematic uncertainties have been considered

Sources	$B \rightarrow J/\psi K^*$	$B \rightarrow J/\psi K_S$
Signal modeling	4.4 %	4.6%
Mass difference (B _s -B ⁰)	~0.1%	~0.1%
Combinatorial background (different modeling)	1.25%	5.6%
Combinatorial background (fixing the contribution)	31%	5.6%
$B_s \rightarrow J/\psi \phi$	1.25%	-

$$\begin{split} B \to J/\psi K^{\star} & N(B_s)/N(B^0) = 0.0159 \pm 0.0022 \text{ (stat.)} \pm 0.0050 \text{ (sys.)} \\ B \to J/\psi K_s & N(B_s)/N(B^0) = 0.0108 \pm 0.0019 \text{ (stat.)} \pm 0.0010 \text{ (sys.)} \end{split}$$

12

$$\frac{Br(B_s \rightarrow J/\psi h)}{Br(B^0 \rightarrow J/\psi h)} = \frac{N(B_s \rightarrow J/\psi h)}{N(B^0 \rightarrow J/\psi h)} * \frac{f_d}{f_s} * A_{rel}$$

o Relative Acceptance evaluation using simulation

 $A_{rel} = \frac{N(B^0 \to J/\psi K_s \text{ passed})/N(B^0 \to J/\psi K_s \text{ generated})}{N(B_s \to J/\psi K_s \text{ passed})/N(B_s \to J/\psi K_s \text{ generated})}$

$B \rightarrow J/\psi K^*$	A _{rel} = 1.057 ± 0.010 (stat) ± 0.263(sys.)
$B\to J/\psi K_{\text{S}}$	A_{rel} = 1.012 \pm 0.010 (stat) \pm 0.042 (sys.)

o Systematic uncertainties

Source	$B \rightarrow J/\psi K^*$	$B \rightarrow J/\psi K_S$
$c\tau$ in B ⁰ and B _s MC	0.9%	2.8%
p _⊤ spectrum	2.7%	3%
polarization	24.6%	-

13

Recap of all numbers

$Br(B_s \rightarrow J/\psi h)$	$N(B_s \rightarrow J/\psi h) \star$	$f_d \star \Delta$	
Br(B ⁰ \rightarrow J/ ψ h)	$N(B^0 \rightarrow J/\psi h)$	f_s π_{rel}	where n = K _S or K [^]

 \Rightarrow N(B_s \rightarrow J/ ψ h)/N(B⁰ \rightarrow J/ ψ h):

$B \rightarrow J/\psi K^*$	0.0159 ± 0.0022 (stat.) ± 0.0050 (sys.)
$B\to J/\psi K_{S}$	0.0108 ± 0.0019 (stat.) \pm 0.0010 (sys.)

⇒ f_s/f_d from CDF(Phys.Rev. D77, 072003 (2008)) combined with new PDG value for Br($D_s \rightarrow \phi \pi$)

 $\textbf{0.269} \pm \textbf{0.033}$

$$\Rightarrow \mathbf{A}_{\mathsf{rel}}:$$

1.057 ± 0.010 (stat) ± 0.263 (sys)

 1.012 ± 0.010 (stat) \pm 0.042 (sys)

Br(B_s→J/ψ K_s) Br(B⁰→J/ψ K_s) = 0.041 ± 0.007 (stat.) ± 0.004 (sys.) ± 0.005 (frag.)

⇒ Using PDG values: Br(B⁰ → J/
$$\psi$$
 K^{*}) = (1.33 ± 0.06) * 10⁻³
Br(B⁰ → J/ ψ K⁰) = (8.71 ± 0.32) * 10⁻⁴

 $Br(B_s \rightarrow J/\psi \ K^*)$ = (8.3 ± 1.2 (stat.) ± 3.3 (sys.) ± 1.0 (frag.) ± 0.4 (PDG))*10⁻⁵

 $Br(B_s \rightarrow J/\psi \ K^0)$ = (3.5 ± 0.6 (stat.) ± 0.4 (sys.) ± 0.4 (frag.) ± 0.1 (PDG))*10⁻⁵

Summary

o Two new Cabibbo and color suppressed decays of B_s mesons have been observed by CDF : $B_s \rightarrow J/\psi K^*$ and $B_s \rightarrow J/\psi K_s$

 \Rightarrow significance greater than 7σ

o A preliminary measurement of their $\,$ Branching Ratios relative to the B^0 decays have been done

⇒ For K* : 0.062 ± 0.009 (stat.) ± 0.025 (sys.) ± 0.008 (frag.)

 \Rightarrow For K_s : 0.041 ± 0.007 (stat.) ± 0.004 (sys.) ± 0.005 (frag.)

o These modes are going to provide further information on lifetime difference and CP asymmetries in B_s decays

o CDF is collecting a lot of more events every hour...so stay tuned because more decays are coming soon

Back up

Both analysis have some common Background contributions and signals

o Signals (B⁰ and Bs) templates are obtained from simulation (B⁰ MC)

$$f_{B^0} = N_{B^0} \cdot \left(\frac{f_1}{\sigma_1 \sqrt{2\pi}} e^{-(x-\mu_1)^2/2\sigma_1^2} + \frac{f_2}{\sigma_2 \sqrt{2\pi}} e^{-(x-\mu_2)^2/2\sigma_2^2} + \frac{f_3}{\sigma_3 \sqrt{2\pi}} e^{-(x-\mu_3)^2/2\sigma_3^2}\right)$$

The same template for B⁰ and Bs taking into account Δm =86.8 MeV/c²

o Combinatorial background

$$f_{comb}(x) = N_0 \cdot e^{C_0 x}$$

Exponential function (Float in the final fit)

o Partial reconstruction contribution for 5 bodies B⁰ decays

$$f_{ARGUS}(x) = N_1 \cdot \sqrt{1 - \frac{x^2}{m_0^2}} \cdot e^{-C_1 \frac{x^2}{m_0^2}}$$

Argus function m₀ cut off ~5.14 mass (B⁰)-mass (π⁰) 18

- $B \rightarrow J/\psi$ K* analysis has more backgrounds that need to be modeled o Bs $\rightarrow J/\psi \ \phi$
 - \Rightarrow Templates are obtained from simulation: 2 Gaussians (Fixed in the final fit)
 - \Rightarrow Contribution constrained using Bs $\rightarrow J/\psi~\phi$ data sample
- o Partial reconstruction contribution for 5 bodies Bs decays
 - \Rightarrow modeled with another ARGUS function
 - m_0 cut off at 5.22 GeV/c2 : mass (Bs)-mass(π^0)
 - \Rightarrow exponential constant constrained to be identical to the previous one

Background studied but considered negligible contributions

- o In $B \rightarrow J/\psi$ K* analysis: $B \rightarrow J/\psi$ f₀
- o In B \rightarrow J/ ψ Ks analysis: $\Lambda_b \rightarrow$ J/ $\psi \Lambda$