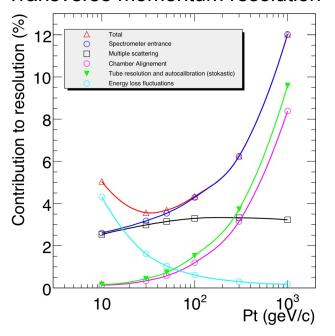
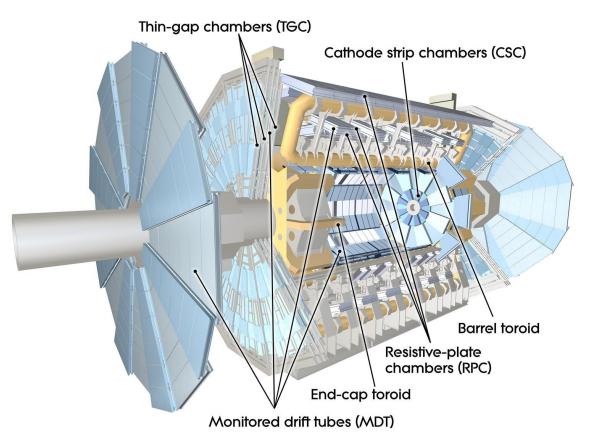


Inner Detector (ID)

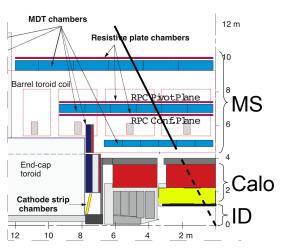
- Solenoidal magnetic field of 2 T
- 3 sub-detectors:
 - Silicon Pixels, Silicon Strips (SCT), Transition Radiation Tracker (TRT)
- Covers $|\eta|$ < 2.5 (2.0 for TRT)

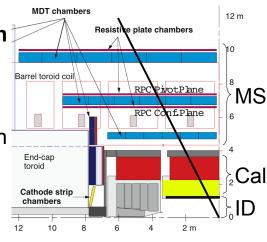

• Designed for tracking efficiency of muons > 99% with momentum resolution $\sigma_{\text{\tiny oT}}/p_{\text{\tiny T}} = 0.05\% p_{\text{\tiny T}} \oplus 1\%$ 2.1m Barrel semiconductor tracker Pixel detectors Barrel transition radiation tracker End-cap transition radiation tracker **End-cap semiconductor tracker**


Muon Spectrometer (MS)

- Toroidal magnetic field of 0.5 T by 8 barrel coils + 2 x 8 end-cap coils
- 2 trigger chamber technologies: RPC (barrel), TGC (end-caps)
- 2 precision tracking technologies: MDT, CSC (high occupancy)

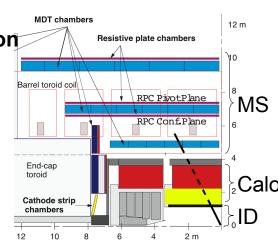
• coverage $|\eta| < 2.7$


Transverse momentum resolution



Muon Identification Algorithms

Standalone Muon track in MS extrapolated to IP corrected for Calo E-loss

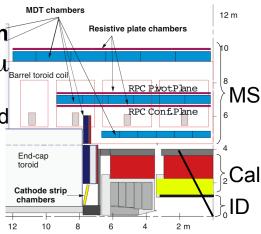


Combined Muon track in MS combined with track in ID Calo E-loss taken into account

Segment Tagged Muon

 $\begin{array}{c} \text{track in ID tagged } \mu \\ \text{if matched to} \\ \text{segment in MS} \end{array}$

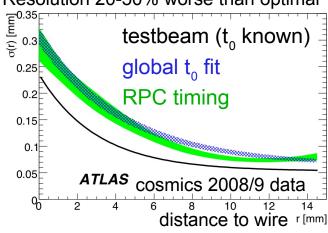
track in ID tagged Muon track in ID tagged µ

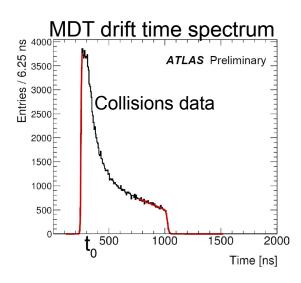

MS if signals in Calo around extrapolated track consistent

Calo Tagged Muon

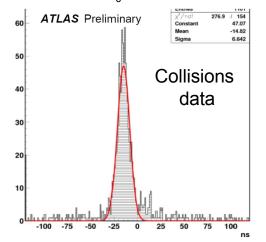
track in ID tagged µ

around extrapolated track consistent


Calo With a M.I.P.


Drift chamber calibration

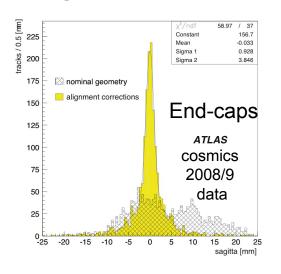
- MDT chambers calibration
 - Constant time offset t₀ (cable lengths etc.) for each channel
 - · Determined from leading edge of drift-time spectrum
 - space drift-time relation from auto-calibration method
- Not optimal resolution yet
 - Not enough statistics to determine t₀ per channel
 - Dedicated track segment fitter with time-offset as extra parameter ('global t₀ fit')
 - Compensates for unknown channel t₀
 - Compensates for randomness of cosmic trigger time

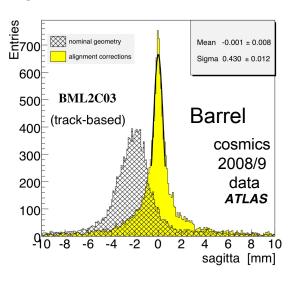

Resolution 20-50% worse than optimal

M. Woudstra ICHEP 22 July 2010

Segment fit t₀ tuning parameter

Muon Spectrometer Alignment

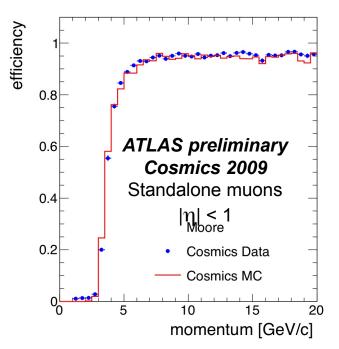

Alignment systems:


Endcap: optical system

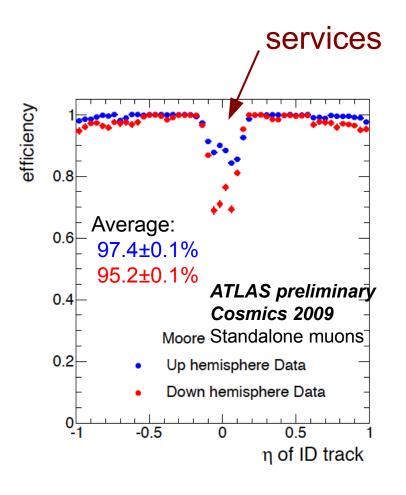
gives absolute positions

Barrel: optical system gives displacements, using tracks to get absolute reference

Assess alignment precision with sagitta distribution of straight tracks (toroid off)

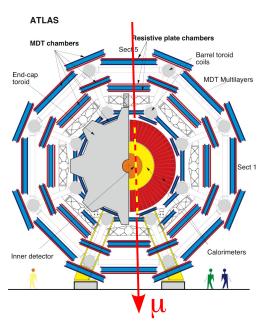

End-caps
Optical systems only
overall mean value
within 40 µm

Barrel

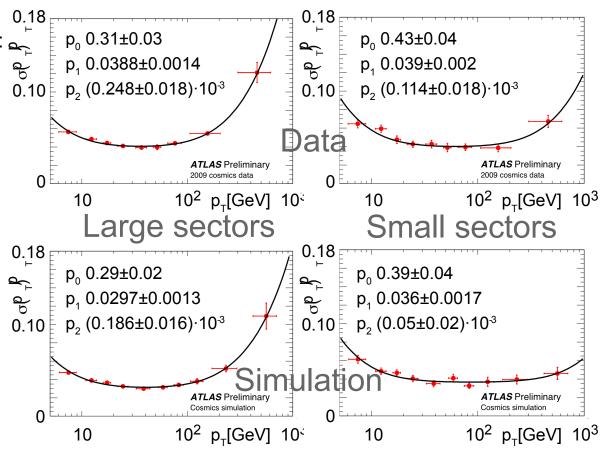

typical mean values of sectors: 30 μm (large sectors), 70 μm (small sectors)

Efficiency from Cosmics

- Select events with high quality 'collision-like' ID tracks going through MS barrel
 - Check if a MS track is reconstructed in
 - top hemisphere (if $p_{\rm ID} > 5 \text{ GeV}$)
 - bottom hemisphere (if $p_D > 9 \text{ GeV}$)



Efficiency turn-on curve:
 Good agreement between data and MC


Resolution from Cosmics

Compare 2 halves of same track:

Fitting function:

$$\frac{\sigma_{p_T}}{p_T} = \frac{p_0}{p_T} \oplus p_1 \oplus p_2 p_T$$

Energy loss fluctuations (p₀) : data and MC compatible

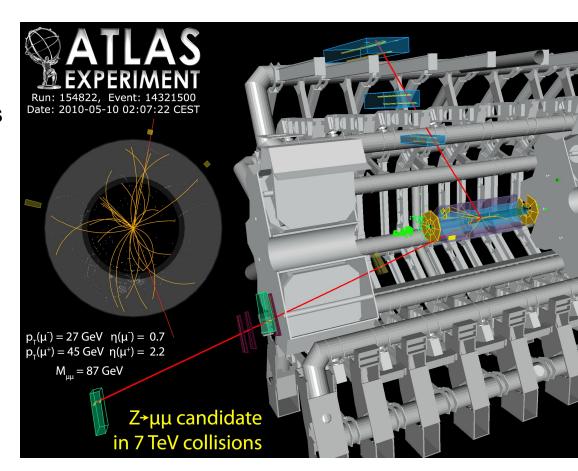
data waraa than MC

→ Calo material OK in MC

Multiple scattering (p₁)

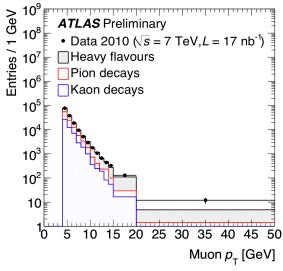
: data worse than MC

→ missing MS material in MC

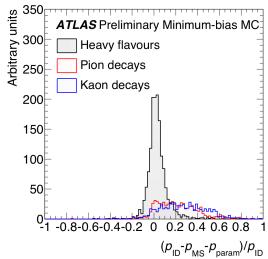

Intrinsic resolution (p₂)

: data worse than MC

→ alignment & calibration not yet optimal

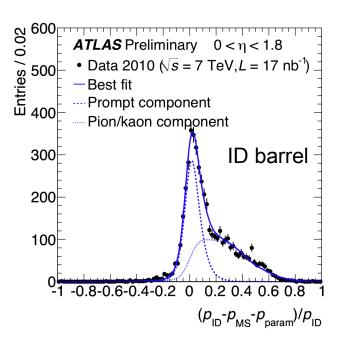

Collisions at 7 TeV

- Results correspond to a detailed study on the first 17 nb⁻¹ of integrated luminosity
- Focused mainly on single muon triggered events
- Used calorimeter trigger for some studies to avoid bias
- Focus on combined and segment tagged muons

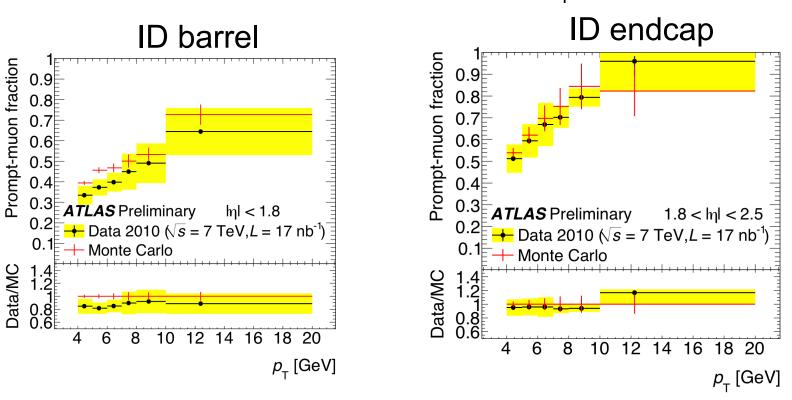


Prompt muon component

• 'Prompt' μ (mainly from b, c) contaminated with (late) decays of π and K


measurement of combined muons

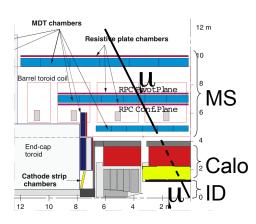
- Determine 'prompt' fraction by exploiting the double momentum
- Discriminating variable: relative ID-MS momentum imbalance : $\frac{(p_{\mathit{ID}} p_{\mathit{MS}} p_{\mathit{param}})}{p_{\mathit{ID}}}$

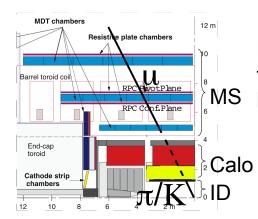

 p_{param} = average energy loss in the Calorimeter

 Fit fractions using templates derived from MC

Prompt muon component

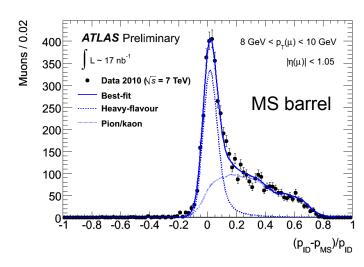
Measured fraction vs. $p_{\scriptscriptstyle T}$


Data generally agrees with MC within errors


Momentum scale & resolution

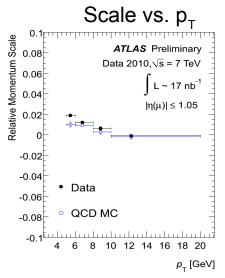
• Relative MS-ID comparison : $\Delta p/p = (p_{||D} - p_{||MS}) / p_{||D}$

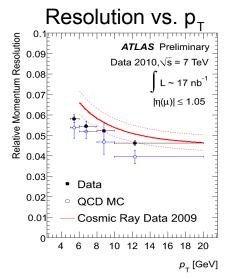
 $p_{\text{\tiny MS}}$: muon standalone track (at IP, corrected for Calo E-loss)

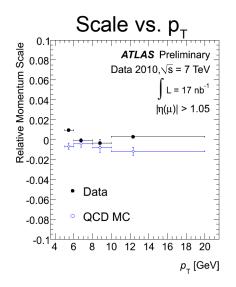

'Prompt' muons (b,c,... decays) usable for this measurement ('signal')

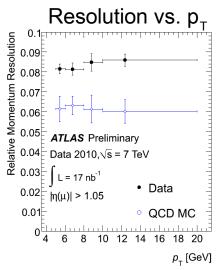
Background muons from (late) π/K decays bias the measurement

- Disentangle 'signal' and background as for prompt muon fraction
 - Background template: from QCD MC
 - 'Signal' template function : Gauss ⊗ Landau
 - → gives Scale & Resolution


Momentum scale & resolution

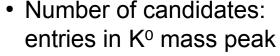

Barrel


- ID resolution much better than MS for shown p_⊤ range
 - Sum resolution ≈ MS resolution
- Good overall agreement between data and MC

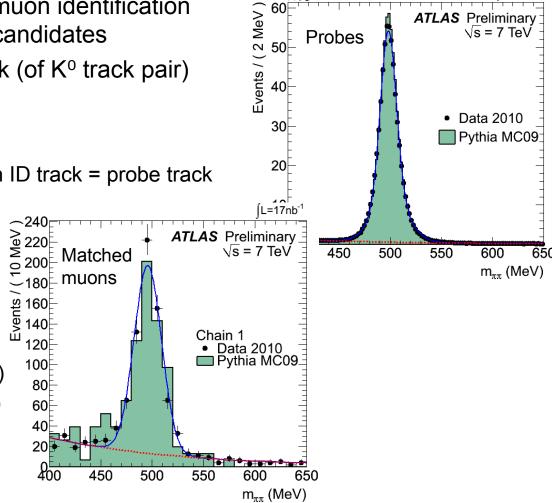

End-cap

- ID resolution ≈ MS resolution
- Worse resolution in data due to imperfect alignment

Low momentum background


• π/K decays-in-flight to μ are the main sources of background at low momentum

 Test background rejection of muon identification with pure sample of $K^0 \rightarrow \pi^+\pi^-$ candidates


Probe track: highest p_r ID track (of K⁰ track pair)

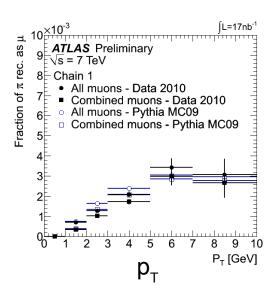
Matched muon:

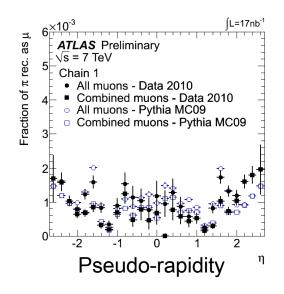
reconstructed muon with an ID track = probe track

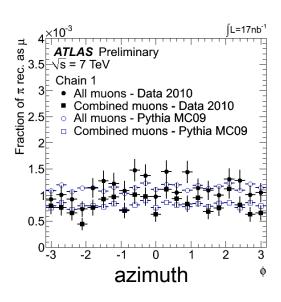
- 636940 probes (95% purity)
- 644 muons (461 combined)

Probes

 $\sqrt{s} = 7 \text{ TeV}$


Low momentum background


• Fraction: $f = N_{muon}/N_{probe}$


• All muons: 0.101±0.014 %

Combined muons: 0.070±0.012 %

→ Combined muons lower because of better rejection than segment tagged muons

Good overall agreement between MC and data

Conclusions

- ATLAS Muon Spectrometer performance has been studied with cosmic muons
 - The track reconstruction efficiency (barrel): 96.3%
 - Momentum resolution (barrel): $\frac{\sigma_{p_T}}{p_T} = \frac{0.31}{p_T} \oplus 0.039 \oplus 0.00025 \ p_T \text{ (large sectors)}$ $\frac{\sigma_{p_T}}{p_T} = \frac{0.43}{p_T} \oplus 0.039 \oplus 0.00011 \ p_T \text{ (small sectors)}$
- ATLAS Muon Identification Performance presented with 17 nb⁻¹ collisions at 7 TeV
 - The muon contamination from π/K decays determined from data
 - Low momentum background from pion decays determined from data
 Fraction of pions reconstructed as muons:
 - 0.101±0.014% (combined + segment tagged)
 - 0.070±0.012 % (combined only)
- Good overall agreement between data and MC both for cosmics and collisions
 - The resolution somewhat worse than expected
 - non-optimal alignment and calibration in data : affects high $p_{\scriptscriptstyle T}$ muons
 - too little material in MC : affects medium p_↑ muons (MC too optimistic)

Backup Slides

Cosmics track cuts

- Efficiency from Cosmics Inner Detector track selection
 - Select events with ≥ 1 ID track passing cuts:
 - ≥ 20 TRT hits, total ≥ 5 hits in SCT+pixel
 - $|d_0| < 1 \text{ m}, |z_0| < 1 \text{ m}$
 - Track $\chi^2/ndf < 3$
 - $|\eta| < 1, p > 5 \text{ GeV}$
- Resolution from Cosmics Muon Spectrometer track selection:
 - ≥7/8+5/6+5/6 MDT hits, ≥2/3 RPC φ layers hit
 - 65°< Θ < 115°
 - $|d_0|$ < 1 m, $|z_0|$ < 2 m
 - $|\Delta\Theta|$ < 10°, $|\Delta\varphi|$ < 10° of the pair
 - NB: no ID track required

Resolution from Cosmics

- Resolution from fit to distribution of $\frac{\Delta p_{\scriptscriptstyle T}}{p_{\scriptscriptstyle T}}$ = $2\frac{p_{\scriptscriptstyle Tlop}-p_{\scriptscriptstyle Tbottom}}{p_{\scriptscriptstyle Tlop}+p_{\scriptscriptstyle Tbottom}}$ in $p_{\scriptscriptstyle T}$ bins Tracks extrapolated to IP and corrected for average energy loss in calorimeter

 - Fit function: narrow Gauss convoluted with Landau plus a broad Gauss
 - Landau to take into account E-loss in the calorimeters (relevant for low p)
 - Resolution σ_{pT}/p_T = (narrow Gauss width + Landau width) / $\sqrt{2}$

Collisions track cuts

- Collision event selection
 - 3 ID tracks associated with a reconstructed primary vertex, each having
 - ≥1 pixel hit, ≥6 SCT hits
- Good muon selection
 - ID part of track: ≥1 pixel hit, ≥6 SCT hits
- Low momentum background K⁰→π⁺π⁻ candidates:
 - ID tracks with ≥1 Pixel hit, ≥6 SCT hits, p_T > 500 MeV
 - Vertex fit to pairs of opposite charged tracks
 - ∀ X²/DoF < 15
 - transverse decay length between 5 and 120 mm
 - angle Θ between the K^0 candidate flight direction and its p vector smaller than 14 mrad ($\cos\Theta_{min}$ > 0.9999)
 - cos Θ* > -0.75, to reject Λ → p⁺π⁻ (Θ* =angle between the p of the K^0 and the p of its lowest p_T track, in the K^0 rest frame)
 - Probe track: highest p_{τ} ID track
 - p > 3 GeV (to reach MS)
 - $p_T > 1$ GeV (kinematics of reco)

Momentum Scale & Resolution

- Template fit to (p_M-p_D)/p_D spectrum:
 - Resolution template:
 - Gaussian convoluted with a Landau
 - Landau to take into account energy loss fluctuations
 - Decays background template:
 - derived from QCD Monte Carlo
 - Resolution = Gaussian width + Landau width
 - Scale = Gaussian mean