
Top Event Search with the early data in ATLAS

Arnaud Lucotte⁽¹⁾, on behalf of the ATLAS collaboration

LPSC Grenoble (IN2P3/CNRS)

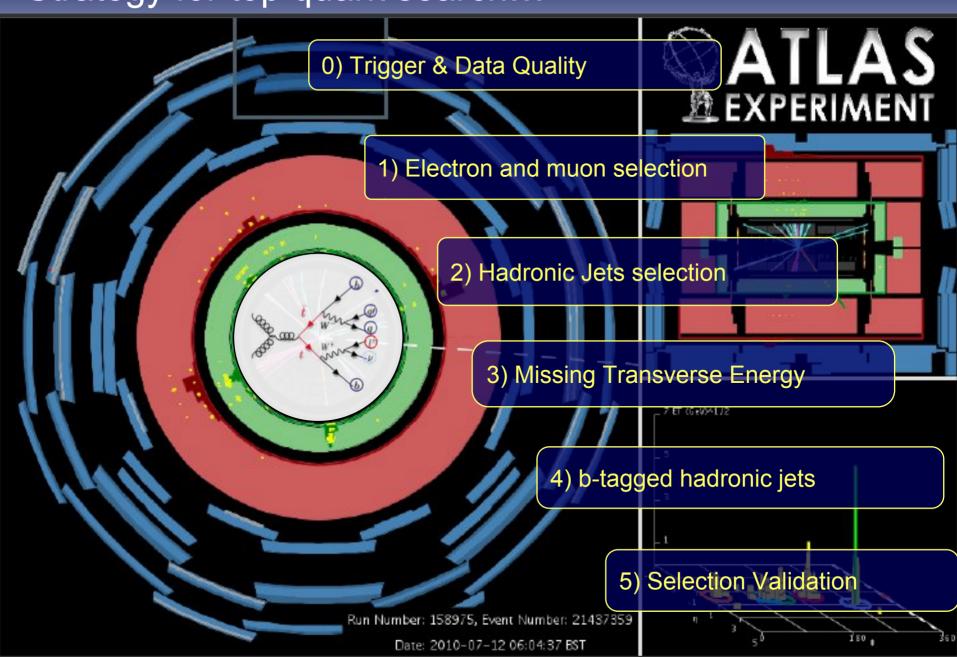
- 1. Context & Top quark search strategy with the early data
- 2. Towards the reconstruction of top quark decays
- 3. First Top event candidates

Top Physics with the early LHC data ...

Expectations with 280 nb⁻¹

Assuming 100% efficiency, we expect Lepton+jets:

~14 in I+jets with I=e, μ


Di-lepton:

~2 events in (ee, $\mu\mu$,e μ)

Strategy with the early data...

- Validate/Calibrate Object reconstruction
 Quality, Trigger, Reconstruction, Calibration
 Validate MonteCarlo descriptions
- Understand QCD & W/Z+jets background
 Determine/Monitor multi-jet events
 Measure W+(HF)jets background
 Data Driven vs Simulation
- Select final state for top candidates
 Define/ validate loose selections
 Constitute control sample for bkgd and signal
 Optimize selection for specific measurements

Strategy for top quark search...

1a) Electron

Electron Sources

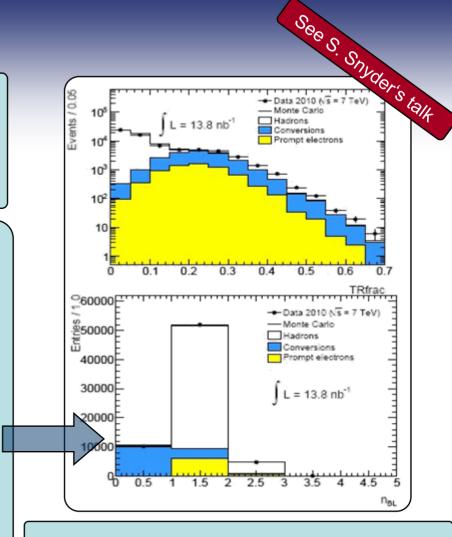
W/Z boson electron : $W(Z) \rightarrow e(e)$

Heavy flavour electron : $b(\rightarrow c) \rightarrow e$

Conversion electron : $\gamma \rightarrow ee$

Fake from charged hadron : h→ e

Electron Identification Tools


« Medium electron»

- Strip layer information --against π^0 's fraction of energy, shower lateral size,
- Cluster-Track Matching : Δη<0.1
- Track Qualityhits in pixel, pixel+SCT,d0,fiducial B-layer

«Tight electron»

- Hadronic Leakage ratio of E_T^{HAD}/E_T^{EM} in 1st (all) Had sampling
- Middle layer (Max. shower)

 ratio in η of cell energies in 3x7 vs 7x7
- Cluster-Track Matching : Ratio E/p (vs hadron)
- B-layer hit (vs conversion)
- Transition Radiation Tracker nb of hits, ratio of High/Low threshold (vs π 's)

Validation of ID tools

Using data driven techniques

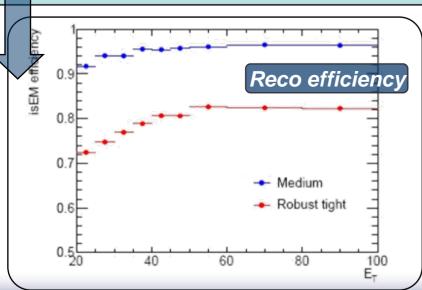
→ Derive components using Matrix Method

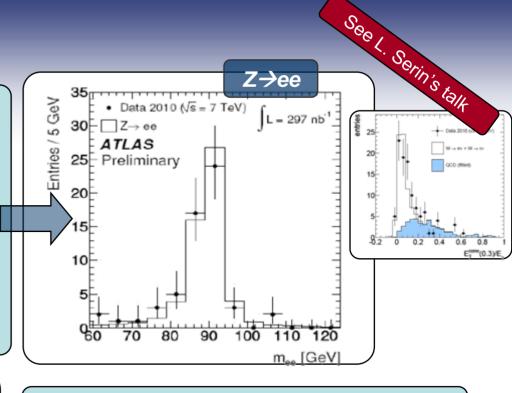
1b) Electron

Electron in W and Z selection

Trigger efficiency of 99.8±0.2% in data
Select electron with p_T>20 GeV

 $|\eta|$ < 2.47 excluding Barrel-EC region Medium or Tight quality


Isolated electron (calorimeter based)


Isolated electron (calorimeter based)

Measure relative efficiency in data/MC Ratio Loose/Medium and Medium/Tight

Validate variable description one by one

→ Agreement at the level of 3% (tight)

Energy scale and resolution

Energy scale & resolution dominated by EM Uncertainty (abs) is $\pm 3\%$ from TB, $\pi^0 \rightarrow \gamma\gamma$

Next: Trigger/Reco efficiency from data

Via resonnances Z→ee, J/ψ,Y→ee

Tag e : tight isolated electron

Probe: looser candidate

 $|M_{ee}-M_Z|$ < 10 GeV

1c) Muon

Muon Identification

Two main sub-systems:

Muon Spectrometer

Inner Detectors: pixel/SCT ($|\eta| < 2.5$),TRT ($|\eta| < 2$)

 \rightarrow Form « Combined Muon » by χ^2 matching

[chain1] Refit of the ID+MS track

[chain2] Stat. combination of MS & ID meas.

Efficiency in MonteCarlo

99% of W $\rightarrow \mu$ are « combined muons »

MS adds 0.6% and calo-tag muon 0.4%

Measurement of relative efficiency at the dca

Use ID+calorimeter tagged muon

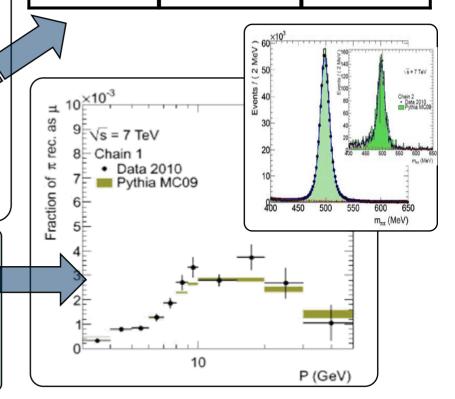
→ Measure relative efficiencies in data / MC

→ Validation of MC at the ~3% level

Muon Fake Estimate

Main sources of non-prompt muon π/K decays & punch through

Use extra cut on MS p_T and Δp_T (ID-MS)<15 GeV


Constraint π/K rate from data using $K^0_S \rightarrow \pi + \pi$ -

Select vertex and count tracks seen as µ

See M. Woudstra's tall

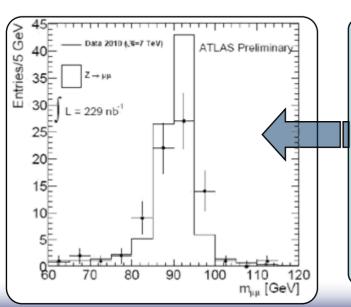
	1 1 4161 41		
MILION	Identification	relative	etticiency
Macil	iaciiliioalioii	ICIALIVE	Ciliololloy

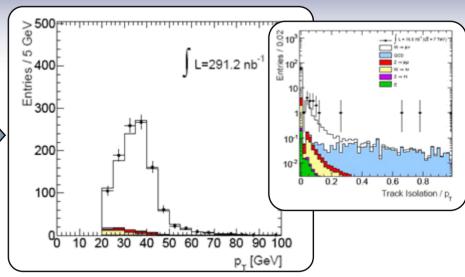
p _T (μ)≥6 GeV	DATA ϵ_{ID}	MC ϵ_{ID}
Chain 1	(94.0±2.0)%	(96.8±0.3)%
Chain 2	(98.7±0.9)%	(97.4±0.2)%

1d) Muon

Muon in W and Z selection

Trigger efficiency of ~99.7% in data Select muon with p_T>20 GeV Combined muon


 $|\eta| < 2.4$


Isolated muon (Σ pT in R=0.3 cone)

 $|p_T^{ID}-p_T^{MS}| < 15 \text{ GeV}$

Measure relative efficiency in data/MC

Validate variable description

High p_T Muon scale and resolution

Select $p_T(\mu) > 20 \text{ GeV/c}$

Momentum scale known at a level <2%

Momentum resolution

Known at 5% (Barrel) and 8.5%(EC)

Next: Trigger/Reco efficiency from data

Tag & Probe using $Z \rightarrow \mu\mu$, $J/\psi, Y \rightarrow \mu\mu$

Tag: « tight » isolated muon

Probe: « medium » muon

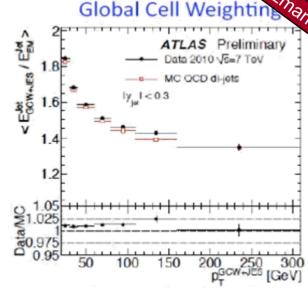
2) Jet Reconstruction and calibration

SeeA

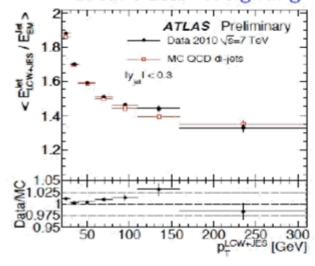
. Schwa

Jet Reconstruction

Anti-KT algorithm with radius of 0.4-0.6
Start from cells regrouped in 3D clusters


Jet Calibration from MC

Several calibration schemes tested vs data


- JES+EM scale (EM+JES) Corrections from MC truth as $f(p_T^{EM})$
- Global Sequential (GS)Add jet-by-jet information (shower shape)
- Global Cell energy-density Weighting (GCW)
 use cell weights based on energy density
 distribution wrt MC
- Local Cluster Weighting (LCW) use topo-cluster properties for an individual calibration derived from MC of single π 's

Performance

Same average corrections over uncalibrated jets Agreement between data and MC at the ~2%

2) Jet Energy Scale and Resolution

Jet Energy Scale Uncertainty

Dominant sources of systematic uncertainties

Dead material (5%)

Hadronic shower model (5%)

Electronic Noise (3%)

LAr/Tile absolute EM scale (3%)

9.4% (10%) for p_T^{jet}<60 GeV Barrel (EC)

7.0% (7.6%) for $p_T^{jet}>60$ GeV Barrel (EC)

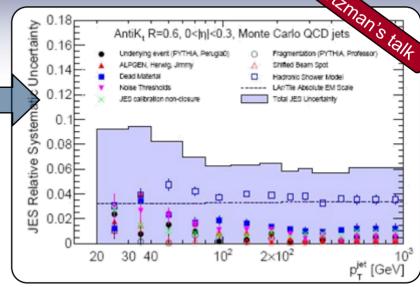
Jet Resolution

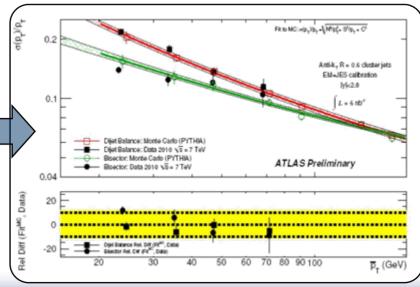
Use dijet balance method & Bisector method

Select back-to-back jet events

Measure $A = (p_T^{probe} - p_T^{ref}/p_T^{avg})$

Determination of σ_{pT} / $p_T \cong \sqrt{2} \ \sigma_A$


MC and data agree within ~14%


for jet of 20< pT <80 GeV

Systematic Uncertainties

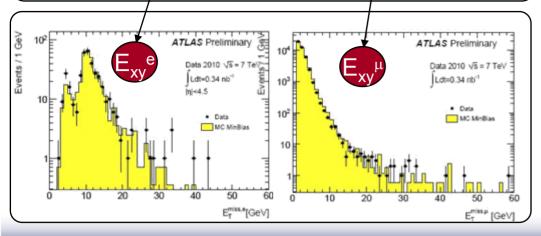
Difference of two methods

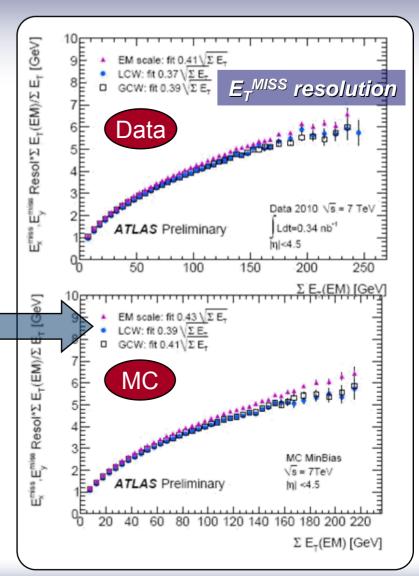
MC Soft radiation correction (3rd jet)

3) Missing Transverse Energy

Missing ET Definition

 Defined from cells belonging to topo-clusters and from muon contribution


Missing ET Calibration


- Global cell weighting calibration (cell level)
 or Local cluster calibration (cells w/in cluster level)
- Refined calibration correction from physics objects: $E_{\tau}^{mis,calo,calib} = E_{\tau}^{e} + E_{\tau}^{y} + E_{\tau}^{\tau} + E_{\tau}^{jets} + E_{\tau}^{calo\mu} + E_{\tau}^{cellOut}$
- →Calibrated missing E_T is well described by MC

Missing ET Resolution

Overall good agreement / some tails in high jet E_TMISS

Resolution in Data / MC in reasonable agreement

3) Missing Transverse Energy

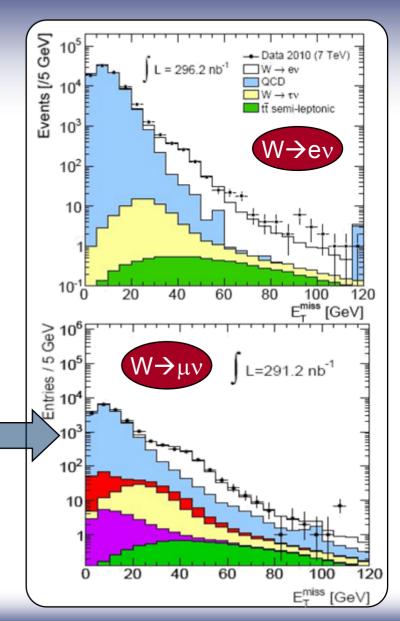
Missing ET Definition

 Defined from cells belonging to topo-clusters (noise suppression) and from muon contribution

Missing ET Calibration

- Global cell weighting calibration (cell level)
 or Local cluster calibration (cells w/in cluster level)
- Refined calibration using physics objects: $E_{\tau}^{mis,calo,calib} = E_{\tau}^{e} + E_{\tau}^{y} + E_{\tau}^{\tau} + E_{\tau}^{jets} + E_{\tau}^{calo\mu} + E_{\tau}^{cellOut}$
- → Calibrated missing E_T is well described by MC

Missing ET Resolution


Overall good agreement / some tails in high jet E_TMISS Resolution in Data / MC in reasonable agreement

Missing ET in W→Iv events

Select events with lepton with p_T>20 GeV
Isolated (remove fake, prompt ...)

Extra Missing ET due to presence of neutrino

→E_TMISS Distributions in good agreement with MC

4) Jet Tagging: Impact Parameter Based

Impact parameter based Taggers

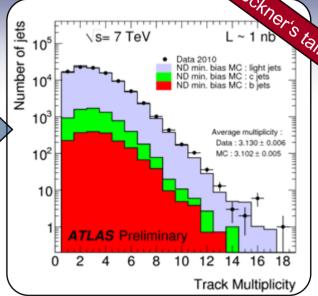
Select quality track in jets

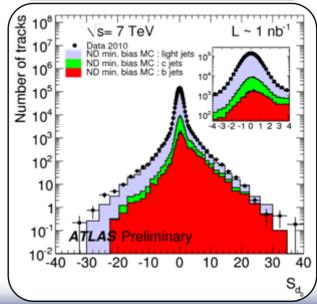
Measure track dca to Primary Vertex

Define significance S_{d0}=d₀/σ_{d0}

Determine resolution functions

→ Validate MC description




- Compute proba. for a track to originate from PV
- Remove V0, conversions, hadron interactions
- Derive Jet Probability to originate from PV:

$$\mathscr{P}_{\text{jet}} = \mathscr{P}_0 \sum_{k=0}^{N-1} \frac{(-\ln \mathscr{P}_0)^k}{k!}, \ \mathscr{P}_0 = \prod_{i=1}^N \mathscr{P}_{\text{trk}_i}$$

TrackCounting Tagger

- Require ≥ 2 good tracks w/ S_{d0} > threshold
- Use a 2nd highest S_{d0} track cut to tag
- Good agreement Data/MC vs p_T and η -ranges

4) Jet Tagging: Impact Parameter Based

See

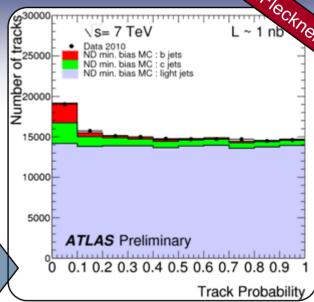
Impact parameter based Taggers

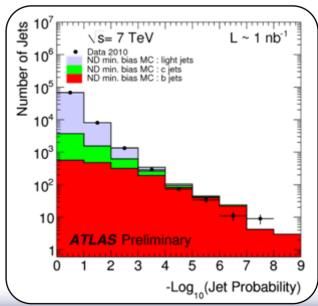
Select quality track in jets

Measure track dca to Primary Vertex

Define significance $S_{d0}=d_0/\sigma_{d0}$ Determine resolution functions

→ Validate MC description


Jet Probability Tagger (Aleph)


- Compute proba. for a track to originate from P
- Remove V0, conversions, hadron interactions
- Derive Jet Probability to originate from PV:

$$\mathscr{P}_{\text{jet}} = \mathscr{P}_0 \sum_{k=0}^{N-1} \frac{(-\ln \mathscr{P}_0)^k}{k!}, \ \mathscr{P}_0 = \prod_{i=1}^N \mathscr{P}_{\text{trk}_i}$$

TrackCounting Tagger

- Require ≥ 2 good tracks w/ S_{d0} > threshold
- Use a 2nd highest S_{d0} track cut to tag
- Good agreement Data/MC vs p_T and η-ranges

4) Jet Tagging: Impact Parameter Based

See

Impact parameter based Taggers

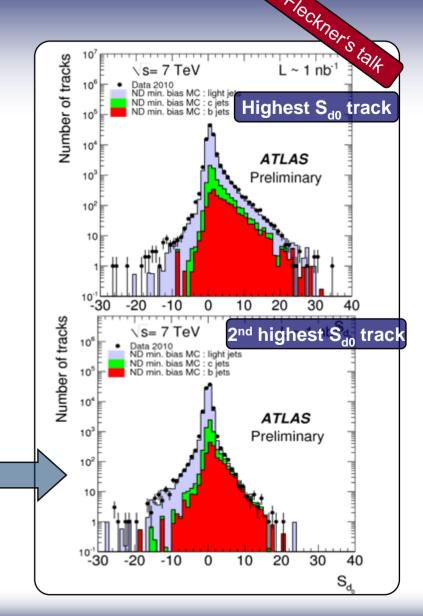
Select quality track in jets

Measure track dca to Primary Vertex

Define significance S_{d0}=d₀/σ_{d0}

Determine resolution functions

→ Validate MC description


Jet Probability Tagger (Aleph)

- Compute proba. for a track to originate from PV
- Remove V0, conversions, hadron interactions
- Derive Jet Probability to originate from PV:

$$\mathscr{P}_{\text{jet}} = \mathscr{P}_0 \sum_{k=0}^{N-1} \frac{(-\ln \mathscr{P}_0)^k}{k!}, \ \mathscr{P}_0 = \prod_{i=1}^N \mathscr{P}_{\text{trk}_i}$$

TrackCounting Tagger

- Require ≥ 2 good tracks w/ S_{d0} > threshold
- Use a 2nd highest S_{do} track cut to tag
- Good agreement Data/MC vs p_T and η -ranges

ICHEP 2010 FRI 23-JUL-2010 14

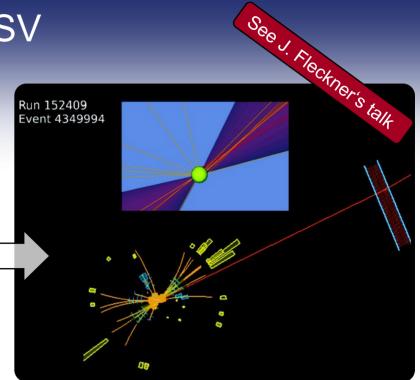
4) Jet Tagging: Soft muon & SV

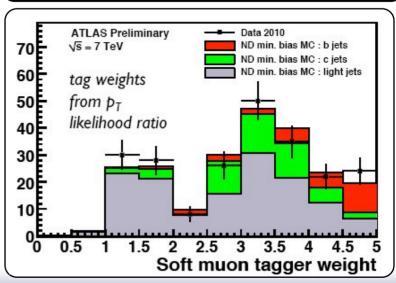
Soft Muon Tagger

Tag soft muon from $b(\rightarrow c)\rightarrow \mu X$ [BR~20%] Select *combined muon* in jets

Good MS and ID match

Muon track w/ 7Si+2 pixels+1 BL hits


 $|d_0| < 1 \text{ mm and } |Z_0 \sin \theta| < 1.5 \text{ mm}$

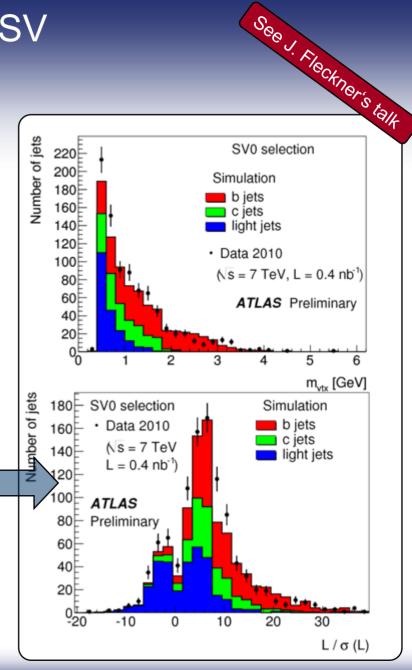

Use $p_T^{rel}(\mu)$ as discriminant variable

→Fit templates of b, c and light jets

Secondary Vertex Tagger

- Reconstruct vertex from 2-track combinations with dca/ σ_{dca} above 2
- Compute 3D decay length significance Impose tracks to have 2-track Σ dca/ σ_{dca} > 6 Cut on χ^2 to ensure bad compatibility w/ PV
- Removal of V0 and γ-conversion
- Removal of vertices in pixel layer (interactions)

ICHEP 2010 FRI 23-JUL-2010


4) Jet Tagging: Soft muon & SV

Soft Muon Tagger

Tag soft muon from $b(\rightarrow c)\rightarrow \mu X [BR~20\%]$ Select combined muon in jets Good MS and ID match Muon track w/ 7Si+2 pixels+1 BL hits $|d_0| < 1 \text{ mm and } |Z_0 \sin \theta| < 1.5 \text{ mm}$ Use $p_T^{rel}(\mu)$ as discriminant variable →Fit templates of b, c and light jets

Secondary Vertex Tagger

- Reconstruct vertex from 2-track combinations with dca/ σ_{dca} above 2
- Compute 3D decay length significance Impose tracks to have 2-track $\Sigma dca/\sigma_{dca} > 6$ Cut on χ^2 to ensure bad compatibility w/ PV
- Removal of V0 and γ-conversion
- Removal of vertices in pixel layer (interactions)

Top quark Candidate Search with 280 nb⁻¹...

Top quark search in « electron+jets »

Electron+jets selection

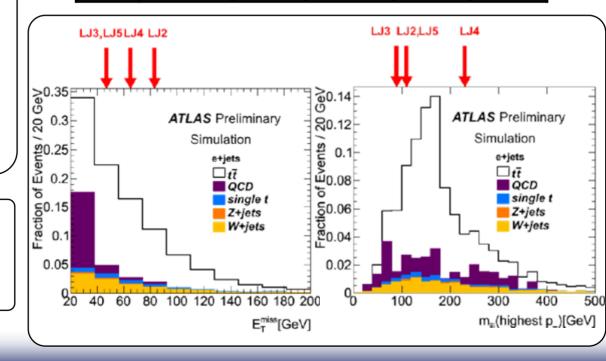
Primary Vertex with ≥ 5 tracks
One electron with $p_T > 20$ GeV

Trigger matched

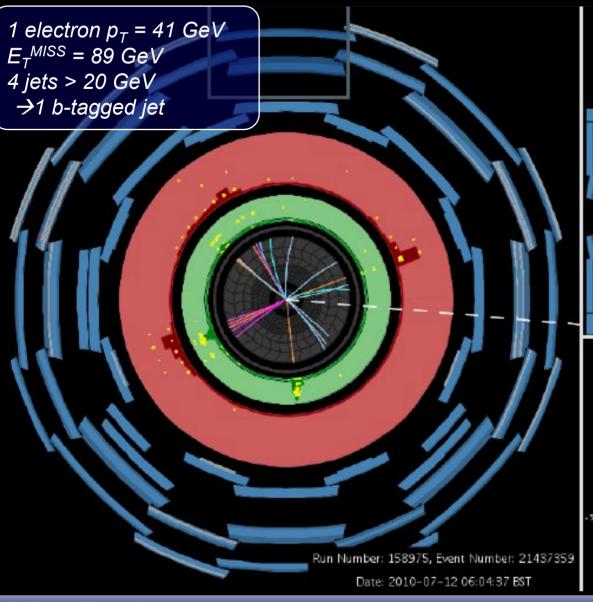
Medium quality

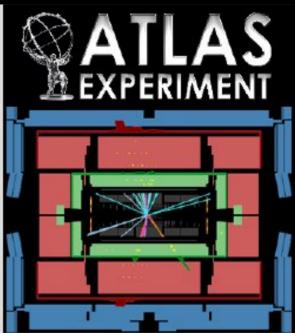
Track with B-layer hit

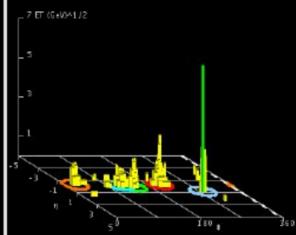
Isolated around e-direction
At least 4 jets with $p_T > 20$ GeV


Pseudo rapidity $|\eta| \leq 2.5$ EM scale + JES calibration ≥ 1 b-tagged jet (SV0)

Missing Transverse Energy $E_T^{MISS} > 20$ GeV


Note	on	B-tagging


SV0 is the default tagger Jet by JetProb & TrackCount used as cross-checks


	p _T ^{lep} (GeV)	N _{jet} (N _{tag})	E _T ^{MISS} (GeV)	m _T (GeV)	M _{jjj} (GeV)
LJ2	41.4	4 (1)	89.3	68.7	106
LJ3	26.2	4 (1)	46.1	62.6	94
LJ4	39.1	4 (1)	66.7	102	231
LJ5	79.3	4 (1)	43.4	86.7	122

Top pair candidates in « electron+jets »

Top quark search in « muon+jets »

Muon+jets selection

Primary Vertex with ≥5 tracks At least 4 jets with p_T>20 GeV

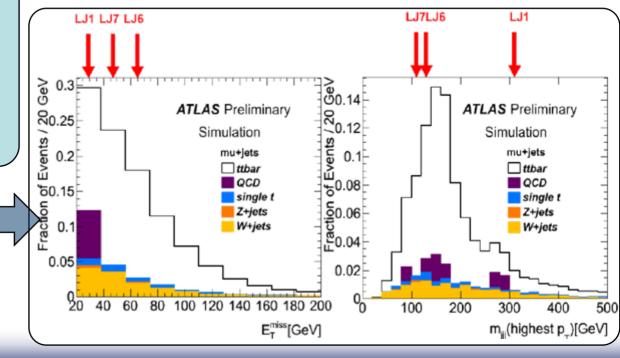
Pseudo rapidity $|\eta| \le 2.5$

EM scale + JES calibration

≥1 b-tagged jet (SV0)

Missing Transverse Energy

E_TMISS >20 GeV


one muon with p_T> 20 GeV

Trigger matched

Combined Tight

Isolated around μ direction

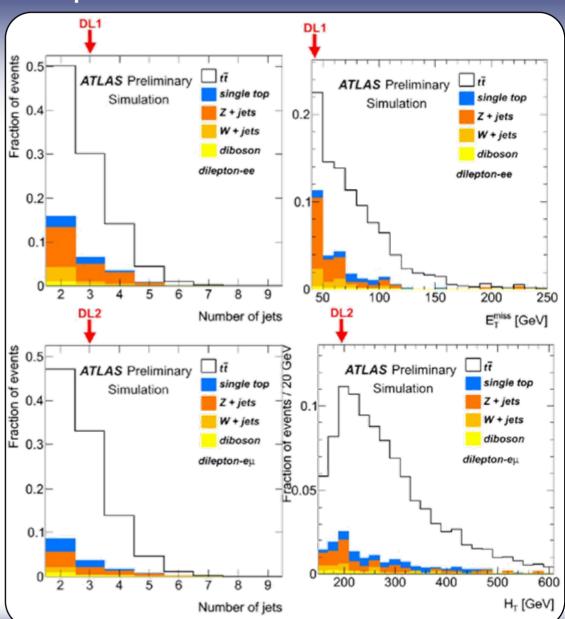
	p _T ^{lep} (GeV)	N _{jet} (N _{tag})	E _T ^{MISS} (GeV)	m _T (GeV)	M _{jjj} (GeV)
LJ1	42.9	7 (1)	25.1	59.3	314
LJ6	29.4	5 (1)	65.4	64.1	126
LJ7	78.7	4 (1)	40.0	83.7	108

Top quark search in « dilepton channel »

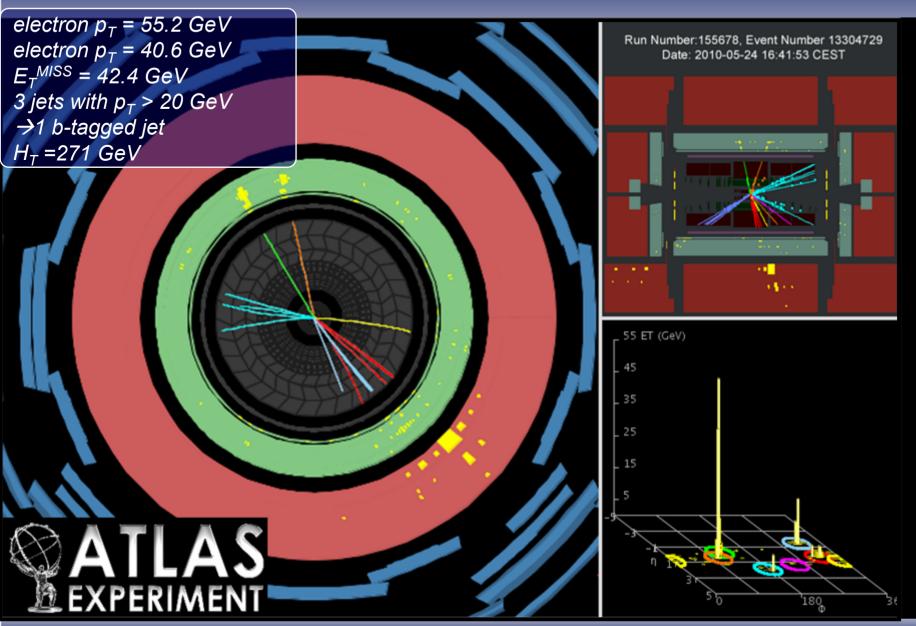
Di-lepton selection

Primary Vertex with ≥ 5 tracks 2 leptons with $p_T > 20$ GeV

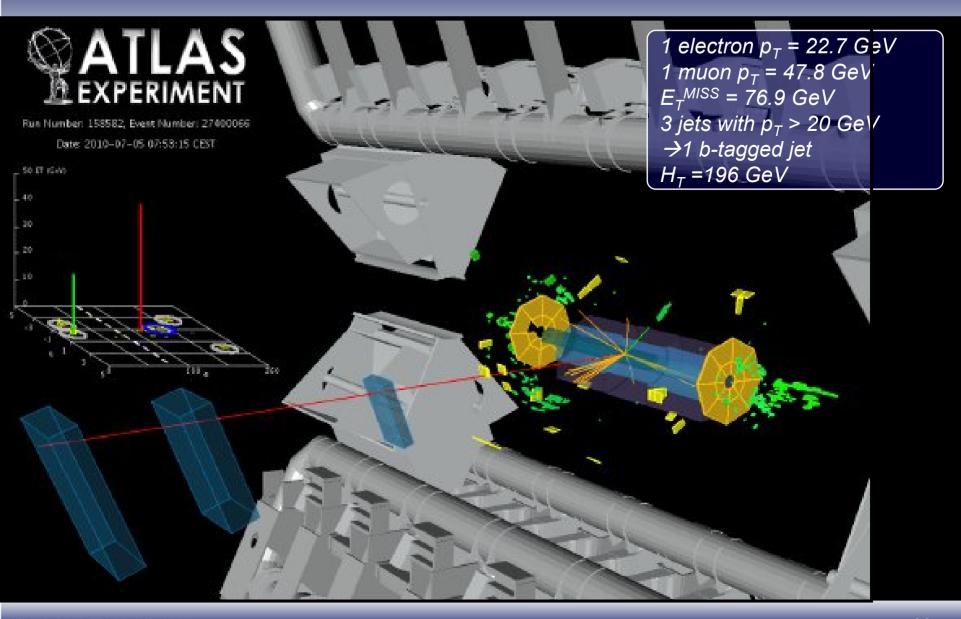
Medium electron and/or


Combined muon

At least 2 jets with $p_T > 20$ GeV


No b-tagging required

[ee] $E_T^{MISS} > 40$ GeV $|M_{II}-M_Z| > 5$ GeV $|M_{II}-M_Z| > 10$ GeV $|M_{II}-M_Z| > 10$ GeV $|p_{II}-M_Z| > 10$ GeV


	p _T ^{lep} (GeV)	N _{jet} (N _{tag})	E _T MISS (GeV)	H _T (GeV
DL1 ee	55.2/40.6	3 (1)	42.4	271
DL2 eμ	22.7/47.8	3 (1)	76.9	196

Top pair candidate in **ee** channel

Top pair candidate in « eµ channel »

Summary & Perspectives

Top quark physics requires an overall good understanding of the detectors

A lot of progress in understanding most physics objects has already been achieved:

Leptons reconstruction, ID and resolution performance

Hadronic jets reconstruction, ID, calibration & resolution

Missing transverse energy calibration, correction & resolution

B-tagging tools (several taggers) tested against first data

Still a lot remains to be done:

Lepton performance calibration with (Z) data

In situ Jet energy scale calibration, higher statistics in situ resolution measurements

Validate Background Estimate & Description in data control sample

A search for top quark candidates has been conducted with 280 nb⁻¹

Strategy has been defined to look for top (pair) candidates

Specific selections developped for top pair in lepton+jets and dilepton channels

Some candidates have been identified

Number of observed events is compatible with expectations

Kinematic properties are consistent with top pair expectations

Larger data sample is required to quantify background to a level where it can support a conclusive observation of top quark production in ATLAS ...but a new era for Top Physics is about to begin...