Heavy flavour and Quarkonium measurements with ALICE at LHC

Javier Castillo for the **ALICE Collaboration**

Outline

- Physics motivations
- ALICE experiment
- ALICE capabilities
 - Open heavy flavour
 - Quarkonia
- First results from 7 TeV p-p collisions
- Conclusions
- Disclaimer:
 - muon spectrometer biased
 - other heavy flavour results in
 - G. Bruno, session 05 22/7
 - A. Grelli, session 05 22/7
 - R. Bailhache, session 05 poster

- In Pb-Pb collisions: probe the properties of the medium
 - created in the hard initial collisions
 - experience the whole collision history
 - possible comparison heavy quarks/light partons
 - energy loss:

 $\Delta E_{g} > \Delta E_{u,d,s} > \Delta E_{c} > \Delta E_{b}$

dead cone effect (mass) Casimir factor (colour charge)

$$R_{AA}^{H}(p_{t}) = \frac{1}{N_{coll}} \frac{dN_{AA}^{H}/dp_{t}}{dN_{pp}^{H}/dp_{t}} \qquad \text{medium density and size} \quad R_{AA}^{\pi} \leq R_{AA}^{D} \leq R_{AA}^{B}$$

- In p-p collisions:
 - baseline for Pb-Pb
 - measure charm and beauty cross section
 - compare to pQCD predictions

Quarkonia, heavy ions and the QGP?

- A long lasting story...
 - 1986, Matsui and Satz: J/ $\!\psi$ suppression as a QGP signature
 - NA38, NA50, NA60 at SPS
 - PHENIX, STAR at RHIC
- ... and many open questions
 - similar suppression at RHIC and at SPS
 - larger suppression at larger rapidities
 - cold nuclear matter effect (still) weakly constrained
 - statistical hadronization, recombination?

... and then?? The LHC might enlighten us ...

The LHC and its features

- Large energy step (RHIC x30)
 - A QGP that will be
 - hotter,
 - bigger,
 - longer lived,
 - earlier thermalized.
 - Large hard probe production cross-sections

No and the		SPS	RHIC		LHC	
		17 GeV	200 Ge	eV	5.5 TeV	
initia	IT ~	200 MeV	MeV ~ 300 MeV		600 MeV	
volur	ne	10 ³ fm ³	10 <u>4</u> fn	ງ ³	10 ⁵ fm ³	
lifetime		< 2 fm/c	2-4 fm		> 10 fm/c	
	SPS PbPb Cent	RHIC AuAu Cent	LHC pp	LHC pPb	LHC PbPb Cent	
cc	0.2	10	0.2	1	115	

0.05

0.007

bb

0.03

5

5

•

ALICE

Central barrel (η <0.9)		• Muon spectrometer (-	-4.0<η<-2.5)
 Open heavy flavour hadronic channel semi-leptonic decays (e) Quarkonia e⁺e⁻ 	 Tracking: ITS+TPC+TRD PID: TPC+TRD+TOF Secondary vertexing: ITS 	 Open heavy flavour semi-leptonic decays (µ) Quarkonia µ⁺µ⁻ 	 Absorber Tracking chambers MUON Trigger
		ABSORBER TRACKIN CHAMBE	MUON FILTER TRIGGER CHAMBERS

Heavy flavour measurement potential

Muons from charm at forward rapidity

- Unfold single muon p_{t} and dimuon invariant mass spectra
- No dca cuts \rightarrow use large statistics to constrain the fits

Secondary J/ψ

- χ_c : contribution ~30%
 - $-\chi_c \rightarrow J/\psi + \gamma$
 - J/ψ in dielectron channel
 - γ in γ -conversion

- feasible in pp collisions
 - ~7k $\chi_{\rm c}$ but requires a trigger strategy which is under study
- ψ ': contribution ~10%
 - challenging

- B mesons: contribution ~20%
 - B→J/ψ+X
 - Non photonic electrons
 - à la CDF: simultaneous fit
 - Invariant mass distribution
 - Pseudo proper decay time

- In muon arm
 - method using 3 muon events is under study

Quarkonia: what could be achieved

Upsilon measurements

 Separation of family states is possible (100 MeV resolution)

- Good sensitivity to "suppression" scenarii
 - Suppression 1: $T_C = 270$ MeV; $T_D/T_C = 4.0$ (1.4) for $\Upsilon(\Upsilon')$;
 - Suppression 2: $T_{C} = 190 \text{ MeV}$; $T_{D}/T_{C} = 2.9 (1.1) \text{ for } \Upsilon(\Upsilon')$;

- Polarization – Angular distribution of μ + in the quarkonium rest frame. • $\frac{d\sigma}{d\cos\theta_{_H}} \propto 1 + \alpha\cos^2\theta_{_H}$ **p**_{targ} **P**_{proj} transverse • $\alpha = \frac{\sigma_T - 2\sigma_L}{\sigma_T + 2\sigma_L} \Rightarrow \begin{cases} \\ \end{cases}$ no polarization longitudinal Y1S - Polarization reconstruction MC 1.5 Year – Y polarization • 1 nominal year for integrated studies
 - Several years for differentials

First results from 7 TeV p-p collisions

Integrated triggers

- CINT1B: interaction trigger
 - at least one charged particle in 8 η units
- CMUS1B: single-muon trigger:

forward muon in coincidence with interaction trigger

Further background-event rejection is performed offline by selecting events which:

- 1. have the correct event type (physics);
- 2. trigger on bunch crossings;
- 3. fulfill at least -one- of the three following conditions:
 - a) 2 fired chips in the SPD*
 - b) 1 fired chip in the SPD* and a beam-beam flag in either V0A or V0C**
 - beam-beam flags on both sides V0A and V0C**;
- are not flagged as beam-gas by either VOA or V0C**.

* calculated offline from reconstructed clusters** calculated offline from the V0 signals

Open heavy flavour: D mesons

Javier Castillo

ICHEP2010 - Paris, France - 22/10/2010

Open heavy flavour in the electron channel

- Compute the inclusive cross section using electrons
- \bullet For high $p_{\mathsf{T}},$ the contribution from charm and beauty becomes dominant
- Essential ingredient for the analysis: electron Identification
 - For the moment: TPC + TOF
 - Hard work to add the TRD is going on!
 - EMCAL will also contribute

- 110M p-p events at 7 TeV
 - 1/3 of available statistics
- Track reconstruction
 - TPC + ITS
- Electron identification (and pion rejection)
 - TPC
 - TRD could be included later
- Fit with a Cristal Ball function
- |η|<0.9

Measurements with the forward muon spectrometer

Open heavy flavour from single muons

Trigger matching

- Iron wall stop hadrons produced in the absorbers

 Distance of Closest Approach

 Could be used to separate c and b signal from π and K background (using simulations)

π and K contribution
 – subtracted using Pythia

– subtracted using Pythia simulations normalized at low $\ensuremath{p_{\text{T}}}$

- c and b contribution
 - dominates for p_T >2 GeV/c

J/ψ in the di-muon channel

Transverse momentum dependence

The width of the J/ψ peak is well reproduced by our Monte Carlo including residual misalignment and other realistic conditions!

Monte Carlo comparison

The acceptance and efficiency corrected distributions are compared to generated MC distribution

Transverse momentum distribution

Conclusion

- The LHC provides a new and promising environment for the study of open heavy flavour and quarkonium production
- ALICE is well suited for the study of heavy flavours
 - Two rapidity domains
- Exciting results from first pp data at 7 TeV
 - J/psi transverse momentum distribution
- Coming soon
 - J/ψ differential cross-section
 - Corrected open heavy flavour measurements
- Looking forward for Pb-Pb data et the end of the year

Back-Up

- Only 1 month per year for the heavy ion program – Including pA or lighter ions
- Lead beam luminosity is limited by the magnets "quench limit" due to EM processes induced by PbPb collisions;
- Large contribution from B-hadron decays to charmonia yields

 $-\sim 20\%$ for J/ ψ

- Cold nuclear matter effects are not well under control
 - Could try different normalizations
 - Will be measured with pA runs
- Heavy Ion running plan (1 month per year)

 First 5 years: 1 PbPb low luminosity, 2 PbPb runs at nominal luminosity, 1 pPb and 1 lighter ion runs

- Next 5 years (based on results): lower energies, pp at 5.5 TeV, other AA or pA, more stat \ldots

Quarkonia in dielectron channel

Quarkonia in dimuon channel

ALICE performances in $\mu^+\mu^-$

0<b<3 fm

State	S[10 ³]	S/B	S/(S+B) ^{1/2}
J/ Ψ	130	0.20	150
Ψ	3.7	0.01	6.7
Ƴ (15)	1,3	1.7	29
Ƴ (25)	0.35	0.68	13
Ƴ (35)	0.20	0.48	8.1

6<b<9 fm

State	S[10 ³]	S/B	S/(S+B) ^{1/2}
J/₩	200	0.49	250
Ψ	5.5	0.03	13
Ƴ (15)	2.0	3.6	39
Ƴ (25)	0.52	1.4	18
Ƴ (35)	0.28	0.95	12

b>12 fm

State	S[10 ³]	S/B	S/(S+B) ^{1/2}
J/ Ψ	22	3,14	130
Ψ '	0,6	0,18	9.7
Ƴ (15)	0.21	9.5	15
Ƴ (25)	0.06	3.6	6.5
Ƴ (35)	0.03	1.9	4,2

Quarkonia: what will be done

- The bread and butter of J/ψ
 - Production yields, cross-sections
 - High statistics
 - From $p_T = 0 \text{ GeV/c}$
 - Detailed "suppression" studies
 - With respect to
 - Beauty
 - $-\,\mathrm{pp}~(\mathrm{R}_{\mathrm{AA}})$
 - As a function of
 - Centrality
 - Transverse momentum (0-20 GeV/c)
 - Rapidity (two domains)
 - Precise pp measurement
 - $3.10^6 \text{ J/}\psi$ in nominal pp run
 - Sensitivity to low x-Bjorken –probing gluon distribution at
 - $x_{Bj} = 2x10^{-4} 4x10^{-6}$;

Particle Identification

D^0 Invariant Mass Spectra in p_T bins

PWG3-D2H-012

D⁺ Invariant Mass Spectra in p_T bins

PWG3-D2H-014

D^{*} Invariant Mass Spectra in p_T bins

pp vs= 7 TeV, 1.40× 10⁸ events, 2 < p^{D*}<3 GeV/c

pp \sqrt{s} = 7 TeV, 1.40× 10⁶ events, 5 < p,⁰ <8 GeV/c

