Latest Results from the MINOS Experiment

Justin Evans, University College London for the MINOS Collaboration

> ICHEP 2010 22nd—28th July 2010

Main Injector Neutrino Oscillation Search

- Long baseline: 735 km
- Neutrino energy ~3 GeV
- > Atmospheric Δm^2

NuMI v_{μ} neutrino beam

Near Detector at Fermilab

Measure beam composition and energy spectrum

Far detector at Soudan mine

- Measure energy-dependent disappearance/appearance
- > Characteristic of oscillations

22nd - 28th July 2009

The MINOS Detectors

Near detector, 1.0 ktonne, 1km from source **Far detector**, 5.4 ktonne, 735 km from source Tracking, sampling calorimeters

- Alternate steel and scintillator planes
- > Functionally identical
- Magnetised to 1.3 T

 e.g. neutrino flux or cross section mismodelings

UCL

MINOS physics goals

MINOS physics goals

Î U C L **MINOS** physics goals

$CC-v_{\mu}$ disappearance measurement

Measure $sin^2(\theta_{23})$ and Δm^2_{32}

Since PRL 101:131802, 2008

Additional data

> $3.4x10^{20} \rightarrow 7.2x10^{20}$ protons on target

Analysis improvements

- Updated reconstruction and simulation
- New selection with increased efficiency
- > No charge sign cut
- Improved shower energy resolution
- Separate fits in bins of energy resolution
- Smaller systematic uncertainties

Justin Evans

Far detector energy spectrum

No Oscillations: 2451 events

Observation: 1986 events

Justin Evans

Far detector energy spectrum

22nd - 28th July 2009

Justin Evans

[†]G.L. Fogli et al., PRD 67:093006 (2003) [‡]V. Barger et al., PRL 82:2640 (1999)

22nd - 28th July 2009

Justin Evans

Neutral current disappearance search

Look for evidence of sterile neutrinos

Neutral current results

22nd - 28th July 2009

Justin Evans

$CC-v_e$ appearance search

Set limits on θ_{13}

\mathbf{CC} - v_e selection

> Characterize longitudinal and transverse energy deposition of shower

Apply selection to ND data to predict background level in FD

- > NC, CC, beam v_e each extrapolate differently
- > Take advantage of NuMI flexibility to separate background components

UCL

Based on ND data, expect 49.1±7.0(stat.)±2.7(syst.) events

22nd - 28th July 2009

Justin Evans

Based on ND data, expect **49.1\pm7.0(stat.)\pm2.7(syst.) events Observe 54** events in the FD; a 0.7 σ excess

v_e appearance results

for
$$\delta_{CP} = 0$$
, $\sin^2(2\theta_{23}) = 1$,
 $\left|\Delta m_{32}^2\right| = 2.43 \times 10^{-3} \text{ eV}^2$:

 $\sin^2(2\theta_{13}) < 0.12$ normal hierarchy $\sin^2(2\theta_{13}) < 0.20$ inverted hierarchy at 90% C.L.

See poster by J. Evans & L. Whitehead

22nd - 28th July 2009

$CC-\overline{v}_{\mu}$ disappearance measurement

Measure $\sin^2(\overline{\theta}_{23})$ and $\Delta \overline{m}_{32}^2$

UC

Making an antineutrino beam

Focus and select positive muons

- Purity 94.3% after charge sign cut
- ➢ Purity 98% < 6GeV</p>

Analysis proceeds as (2008) neutrino analysis

Data/MC agreement comparable to neutrino running

\overline{v}_{μ} results

At the far detector

- No oscillation prediction: 155 events
- > Observe: 97 events
- No oscillations disfavored at 6.3σ

\overline{v}_{μ} results

\overline{v}_{μ} oscillation parameters

Contours include the effects of systematic uncertainties

Justin Evans

The future

With more antineutrino running, MINOS can quickly improve the precision by a significant amount

Doubling the current six-month data set would decrease the uncertainty by 30%

22nd - 28th July 2009

Summary

With 7x10²⁰ PoT of neutrino beam, MINOS finds:

Muon neutrinos disappear

 $\left|\Delta m^2\right| = 2.35^{+0.11}_{-0.08} \times 10^{-3} \,\mathrm{eV}^2,$ $\sin^2(2\theta) > 0.91 \,(90\% \,\mathrm{C.L.})$

NC event rate is not diminished

 $f_s < 0.22(0.40)$ at 90% C.L.

Electron-neutrino appearance search sets limits on θ_{13}

```
\sin^2(2\theta_{13}) < 0.12 (0.20) at 90% C.L.
```

With 1.71x10²⁰ PoT of antineutrino beam:

Muon antineutrinos disappear

 $\left|\overline{\Delta m^2}\right| = 3.36^{+0.45}_{-0.40} \times 10^{-3} \text{eV}^2,$ $\sin^2(2\overline{\theta}) = 0.86 \pm 0.11$

We look forward to more antineutrino beam

Backup

UC MINOS event topologies

0.5

0

22nd - 28th July 2009

0.5

0

3 3.5 4

1 1.5 2 2.5

Justin Evans

0.4

0.6 0.8

1

0.2

0

-0.4 -0.2

1

e⁻

Use the measured ND energy spectrum to predict the FD spectrum:

Spread of pion decay directions smears neutrino energies

Different energy spectra at the two detectors

Encode the pion decay kinematics into a beam transfer matrix

Convert ND to FD spectrum

Hadronic energy calibration Track energy calibration

- NC background
- Relative Near to Far normalization

New CC v_{μ} selection

Resolution binning

Rock and anti-fiducial events

- Neutrinos interact in rock around detector and outside of fiducial \succ region
- \succ These events double sample size, events have poorer energy resolution

38

Fit CC/NC spectra simultaneously with a 4th (sterile) neutrino

2 choices for 4th mass eigenvalue

> m₄>>m₃

> m₄=m₁

Electron neutrino systematics

Checking signal efficiency

1.0

efficiency 0.8 0.6 CalDet data **CalDet MC** 0.4 1 2 3 5 6 8 7 P (GeV) efficiency ratio, data / MC 1.1 1.0 0.9 2 3 5 1 6 8 7 P (GeV)

Test beam measurements demonstrate electrons are well simulated

22nd - 28th July 2009

Check electron neutrino selection efficiency by removing muons, add a simulated electron

Antineutrino selection

transverse position (m) Coil Hole -3.5 Focused 21 20232224z position (m) 1.4 1.6 1.6 2 2 2 2 2

21

z position (m)

22

22nd - 28th July 2009

Justin Evans

-2.4 -2.6

-2.8

-3.26

17

18

19

20

- Vertices uniformly distributed
- Track ends clustered around coil hole

Previous antineutrino result

Results consistent with (less sensitive) analysis of anti-neutrinos in the neutrino beam

- Antineutrinos from unfocused beam component
- Mostly high energy antineutrinos

Analysis of larger exposure on going

$\overline{v_{\mu}}$ comparison to Super-Kamiokande

22nd - 28th July 2009